Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 27

1.

Acetylcholine Release Inhibits Distinct Excitatory Inputs Onto Hippocampal CA1 Pyramidal Neurons via Different Cellular and Network Mechanisms.

Goswamee P, McQuiston AR.

Front Cell Neurosci. 2019 Jun 12;13:267. doi: 10.3389/fncel.2019.00267. eCollection 2019.

2.

Corrigendum: A Novel Retinal Oscillation Mechanism in an Autosomal Dominant Photoreceptor Degeneration Mouse Model.

Tu HY, Chen YJ, McQuiston AR, Chiao CC, Chen CJ.

Front Cell Neurosci. 2017 Aug 21;11:257. doi: 10.3389/fncel.2017.00257. eCollection 2017.

3.

Selective Vulnerability of Striatal D2 versus D1 Dopamine Receptor-Expressing Medium Spiny Neurons in HIV-1 Tat Transgenic Male Mice.

Schier CJ, Marks WD, Paris JJ, Barbour AJ, McLane VD, Maragos WF, McQuiston AR, Knapp PE, Hauser KF.

J Neurosci. 2017 Jun 7;37(23):5758-5769. doi: 10.1523/JNEUROSCI.0622-17.2017. Epub 2017 May 4.

4.

HIV-1 Tat causes cognitive deficits and selective loss of parvalbumin, somatostatin, and neuronal nitric oxide synthase expressing hippocampal CA1 interneuron subpopulations.

Marks WD, Paris JJ, Schier CJ, Denton MD, Fitting S, McQuiston AR, Knapp PE, Hauser KF.

J Neurovirol. 2016 Dec;22(6):747-762. Epub 2016 May 13.

5.

A Novel Retinal Oscillation Mechanism in an Autosomal Dominant Photoreceptor Degeneration Mouse Model.

Tu HY, Chen YJ, McQuiston AR, Chiao CC, Chen CK.

Front Cell Neurosci. 2016 Jan 12;9:513. doi: 10.3389/fncel.2015.00513. eCollection 2015. Erratum in: Front Cell Neurosci. 2017 Aug 21;11:257.

6.

Acetylcholine release in mouse hippocampal CA1 preferentially activates inhibitory-selective interneurons via α4β2* nicotinic receptor activation.

Bell LA, Bell KA, McQuiston AR.

Front Cell Neurosci. 2015 Apr 13;9:115. doi: 10.3389/fncel.2015.00115. eCollection 2015.

7.

Activation of muscarinic receptors by ACh release in hippocampal CA1 depolarizes VIP but has varying effects on parvalbumin-expressing basket cells.

Bell LA, Bell KA, McQuiston AR.

J Physiol. 2015 Jan 1;593(1):197-215. doi: 10.1113/jphysiol.2014.277814. Epub 2014 Nov 28.

8.

Acetylcholine release and inhibitory interneuron activity in hippocampal CA1.

McQuiston AR.

Front Synaptic Neurosci. 2014 Sep 16;6:20. doi: 10.3389/fnsyn.2014.00020. eCollection 2014. Review.

9.

Synaptic muscarinic response types in hippocampal CA1 interneurons depend on different levels of presynaptic activity and different muscarinic receptor subtypes.

Bell LA, Bell KA, McQuiston AR.

Neuropharmacology. 2013 Oct;73:160-73. doi: 10.1016/j.neuropharm.2013.05.026. Epub 2013 Jun 5.

10.

Optogenetic stimulation of the corticothalamic pathway affects relay cells and GABAergic neurons differently in the mouse visual thalamus.

Jurgens CW, Bell KA, McQuiston AR, Guido W.

PLoS One. 2012;7(9):e45717. doi: 10.1371/journal.pone.0045717. Epub 2012 Sep 20.

11.

Defective retinal depolarizing bipolar cells in regulators of G protein signaling (RGS) 7 and 11 double null mice.

Shim H, Wang CT, Chen YL, Chau VQ, Fu KG, Yang J, McQuiston AR, Fisher RA, Chen CK.

J Biol Chem. 2012 Apr 27;287(18):14873-9. doi: 10.1074/jbc.M112.345751. Epub 2012 Feb 27.

12.

Nicotinic excitatory postsynaptic potentials in hippocampal CA1 interneurons are predominantly mediated by nicotinic receptors that contain α4 and β2 subunits.

Bell KA, Shim H, Chen CK, McQuiston AR.

Neuropharmacology. 2011 Dec;61(8):1379-88. doi: 10.1016/j.neuropharm.2011.08.024. Epub 2011 Aug 25.

13.

Sustained survival and maturation of adult neural stem/progenitor cells after transplantation into the injured brain.

Sun D, Gugliotta M, Rolfe A, Reid W, McQuiston AR, Hu W, Young H.

J Neurotrauma. 2011 Jun;28(6):961-72. doi: 10.1089/neu.2010.1697. Epub 2011 May 5.

14.

Mu opioid receptor activation normalizes temporo-ammonic pathway driven inhibition in hippocampal CA1.

McQuiston AR.

Neuropharmacology. 2011 Feb-Mar;60(2-3):472-9. doi: 10.1016/j.neuropharm.2010.10.029. Epub 2010 Nov 4.

15.

Cholinergic modulation of excitatory synaptic input integration in hippocampal CA1.

McQuiston AR.

J Physiol. 2010 Oct 1;588(Pt 19):3727-42. doi: 10.1113/jphysiol.2010.188581. Epub 2010 Aug 6.

16.

Heterologous expression of the invertebrate FMRFamide-gated sodium channel as a mechanism to selectively activate mammalian neurons.

Schanuel SM, Bell KA, Henderson SC, McQuiston AR.

Neuroscience. 2008 Aug 13;155(2):374-86. doi: 10.1016/j.neuroscience.2008.05.052. Epub 2008 Jun 10.

17.
18.

Effects of mu-opioid receptor modulation on GABAB receptor synaptic function in hippocampal CA1.

McQuiston AR.

J Neurophysiol. 2007 Mar;97(3):2301-11. Epub 2007 Jan 10.

19.

Toward a unified hypothesis of interneuronal modulation.

Madison DV, McQuiston AR.

J Physiol. 2006 Feb 1;570(Pt 3):435. Epub 2005 Dec 22. Review. No abstract available.

20.
21.

Electrophysiology of interneurons in the glomerular layer of the rat olfactory bulb.

McQuiston AR, Katz LC.

J Neurophysiol. 2001 Oct;86(4):1899-907.

22.
23.
24.
25.
26.

Neuropeptide Y1 receptors inhibit N-type calcium currents and reduce transient calcium increases in rat dentate granule cells.

McQuiston AR, Petrozzino JJ, Connor JA, Colmers WF.

J Neurosci. 1996 Feb 15;16(4):1422-9.

27.

Neuropeptide Y does not alter NMDA conductances in CA3 pyramidal neurons: a slice-patch study.

McQuiston AR, Colmers WF.

Neurosci Lett. 1992 Apr 27;138(2):261-4.

PMID:
1608537

Supplemental Content

Loading ...
Support Center