Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 13

1.

A Blind Test of Computational Technique for Predicting the Likelihood of Peptide Sequences to Cyclize.

Booth J, Alexandru-Crivac CN, Rickaby KA, Nneoyiegbe AF, Umeobika U, McEwan AR, Trembleau L, Jaspars M, Houssen WE, Shalashilin DV.

J Phys Chem Lett. 2017 May 18;8(10):2310-2315. doi: 10.1021/acs.jpclett.7b00848. Epub 2017 May 10.

2.

Isolation and anti-HIV-1 integrase activity of lentzeosides A-F from extremotolerant lentzea sp. H45, a strain isolated from a high-altitude Atacama Desert soil.

Wichner D, Idris H, Houssen WE, McEwan AR, Bull AT, Asenjo JA, Goodfellow M, Jaspars M, Ebel R, Rateb ME.

J Antibiot (Tokyo). 2017 Apr;70(4):448-453. doi: 10.1038/ja.2016.78. Epub 2016 Jun 29.

PMID:
27353167
3.

An efficient method for the in vitro production of azol(in)e-based cyclic peptides.

Houssen WE, Bent AF, McEwan AR, Pieiller N, Tabudravu J, Koehnke J, Mann G, Adaba RI, Thomas L, Hawas UW, Liu H, Schwarz-Linek U, Smith MC, Naismith JH, Jaspars M.

Angew Chem Int Ed Engl. 2014 Dec 15;53(51):14171-4. doi: 10.1002/anie.201408082. Epub 2014 Oct 21.

4.

Gated rotation mechanism of site-specific recombination by ϕC31 integrase.

Olorunniji FJ, Buck DE, Colloms SD, McEwan AR, Smith MC, Stark WM, Rosser SJ.

Proc Natl Acad Sci U S A. 2012 Nov 27;109(48):19661-6. doi: 10.1073/pnas.1210964109. Epub 2012 Nov 12.

5.

A phage protein that binds φC31 integrase to switch its directionality.

Khaleel T, Younger E, McEwan AR, Varghese AS, Smith MC.

Mol Microbiol. 2011 Jun;80(6):1450-63. doi: 10.1111/j.1365-2958.2011.07696.x. Epub 2011 May 25.

6.

Zinc is essential for high-affinity DNA binding and recombinase activity of ΦC31 integrase.

McEwan AR, Raab A, Kelly SM, Feldmann J, Smith MC.

Nucleic Acids Res. 2011 Aug;39(14):6137-47. doi: 10.1093/nar/gkr220. Epub 2011 Apr 20.

7.

Site-specific recombination by phiC31 integrase and other large serine recombinases.

Smith MC, Brown WR, McEwan AR, Rowley PA.

Biochem Soc Trans. 2010 Apr;38(2):388-94. doi: 10.1042/BST0380388. Review.

PMID:
20298189
8.

DNA binding and synapsis by the large C-terminal domain of phiC31 integrase.

McEwan AR, Rowley PA, Smith MC.

Nucleic Acids Res. 2009 Aug;37(14):4764-73. doi: 10.1093/nar/gkp485. Epub 2009 Jun 10.

9.

Mechanism of enzymatic fluorination in Streptomyces cattleya.

Zhu X, Robinson DA, McEwan AR, O'Hagan D, Naismith JH.

J Am Chem Soc. 2007 Nov 28;129(47):14597-604. Epub 2007 Nov 7.

10.

Characterization and crystal structure of Escherichia coli KDPGal aldolase.

Walters MJ, Srikannathasan V, McEwan AR, Naismith JH, Fierke CA, Toone EJ.

Bioorg Med Chem. 2008 Jan 15;16(2):710-20. Epub 2007 Oct 18.

11.

Substrate specificity in enzymatic fluorination. The fluorinase from Streptomyces cattleya accepts 2'-deoxyadenosine substrates.

Cobb SL, Deng H, McEwan AR, Naismith JH, O'Hagan D, Robinson DA.

Org Biomol Chem. 2006 Apr 21;4(8):1458-60. Epub 2006 Mar 8.

12.

Overexpression, purification, crystallization and data collection of Sulfolobus solfataricus Sso6206, a novel highly conserved protein.

McEwan AR, Liu H, Oke M, Carter L, Powers H, Dorward M, McMahon SA, White MF, Naismith JH.

Acta Crystallogr Sect F Struct Biol Cryst Commun. 2006 Mar 1;62(Pt 3):228-30. Epub 2006 Feb 10.

13.

The fluorinase from Streptomyces cattleya is also a chlorinase.

Deng H, Cobb SL, McEwan AR, McGlinchey RP, Naismith JH, O'Hagan D, Robinson DA, Spencer JB.

Angew Chem Int Ed Engl. 2006 Jan 23;45(5):759-62. No abstract available.

Supplemental Content

Loading ...
Support Center