Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 140

1.

Low-density gel dosimeter for measurement of the electron return effect in an MR-linac.

McDonald BA, Lee HJ, Ibbott GS.

Phys Med Biol. 2019 Oct 16;64(20):205016. doi: 10.1088/1361-6560/ab4321.

PMID:
31505483
2.

Morphological changes in response to environmental stresses in the fungal plant pathogen Zymoseptoria tritici.

Francisco CS, Ma X, Zwyssig MM, McDonald BA, Palma-Guerrero J.

Sci Rep. 2019 Jul 3;9(1):9642. doi: 10.1038/s41598-019-45994-3.

3.

The emergence of the multi-species NIP1 effector in Rhynchosporium was accompanied by high rates of gene duplications and losses.

Mohd-Assaad N, McDonald BA, Croll D.

Environ Microbiol. 2019 Aug;21(8):2677-2695. doi: 10.1111/1462-2920.14583. Epub 2019 Apr 11.

PMID:
30838748
4.

Wheat blast: from its origins in South America to its emergence as a global threat.

Ceresini PC, Castroagudín VL, Rodrigues FÁ, Rios JA, Aucique-Pérez CE, Moreira SI, Croll D, Alves E, de Carvalho G, Maciel JLN, McDonald BA.

Mol Plant Pathol. 2019 Feb;20(2):155-172. doi: 10.1111/mpp.12747. Epub 2018 Oct 24. Review.

5.

Pan-Parastagonospora Comparative Genome Analysis-Effector Prediction and Genome Evolution.

Syme RA, Tan KC, Rybak K, Friesen TL, McDonald BA, Oliver RP, Hane JK.

Genome Biol Evol. 2018 Sep 1;10(9):2443-2457. doi: 10.1093/gbe/evy192.

6.

Hyperspectral Canopy Sensing of Wheat Septoria Tritici Blotch Disease.

Yu K, Anderegg J, Mikaberidze A, Karisto P, Mascher F, McDonald BA, Walter A, Hund A.

Front Plant Sci. 2018 Aug 17;9:1195. doi: 10.3389/fpls.2018.01195. eCollection 2018.

7.

Transposable element insertions shape gene regulation and melanin production in a fungal pathogen of wheat.

Krishnan P, Meile L, Plissonneau C, Ma X, Hartmann FE, Croll D, McDonald BA, Sánchez-Vallet A.

BMC Biol. 2018 Jul 16;16(1):78. doi: 10.1186/s12915-018-0543-2.

8.

Meiosis Leads to Pervasive Copy-Number Variation and Distorted Inheritance of Accessory Chromosomes of the Wheat Pathogen Zymoseptoria tritici.

Fouché S, Plissonneau C, McDonald BA, Croll D.

Genome Biol Evol. 2018 Jun 1;10(6):1416-1429. doi: 10.1093/gbe/evy100.

9.

Genome-wide evidence for divergent selection between populations of a major agricultural pathogen.

Hartmann FE, McDonald BA, Croll D.

Mol Ecol. 2018 Jun;27(12):2725-2741. doi: 10.1111/mec.14711. Epub 2018 May 23.

10.

Genome-Wide Detection of Genes Under Positive Selection in Worldwide Populations of the Barley Scald Pathogen.

Mohd-Assaad N, McDonald BA, Croll D.

Genome Biol Evol. 2018 Apr 1;10(5):1315-1332. doi: 10.1093/gbe/evy087.

11.

A fungal avirulence factor encoded in a highly plastic genomic region triggers partial resistance to septoria tritici blotch.

Meile L, Croll D, Brunner PC, Plissonneau C, Hartmann FE, McDonald BA, Sánchez-Vallet A.

New Phytol. 2018 Aug;219(3):1048-1061. doi: 10.1111/nph.15180. Epub 2018 Apr 25.

12.

Evidence for local adaptation and pleiotropic effects associated with melanization in a plant pathogenic fungus.

Zhu W, Zhan J, McDonald BA.

Fungal Genet Biol. 2018 Jun;115:33-40. doi: 10.1016/j.fgb.2018.04.002. Epub 2018 Apr 4.

PMID:
29626634
13.

When resistance gene pyramids are not durable-the role of pathogen diversity.

Stam R, McDonald BA.

Mol Plant Pathol. 2018 Mar;19(3):521-524. doi: 10.1111/mpp.12636. No abstract available.

14.

Widespread signatures of selection for secreted peptidases in a fungal plant pathogen.

Krishnan P, Ma X, McDonald BA, Brunner PC.

BMC Evol Biol. 2018 Jan 24;18(1):7. doi: 10.1186/s12862-018-1123-3.

15.
16.

Ranking Quantitative Resistance to Septoria tritici Blotch in Elite Wheat Cultivars Using Automated Image Analysis.

Karisto P, Hund A, Yu K, Anderegg J, Walter A, Mascher F, McDonald BA, Mikaberidze A.

Phytopathology. 2018 May;108(5):568-581. doi: 10.1094/PHYTO-04-17-0163-R. Epub 2018 Apr 4.

PMID:
29210601
17.

Comparative Transcriptomics Reveals How Wheat Responds to Infection by Zymoseptoria tritici.

Ma X, Keller B, McDonald BA, Palma-Guerrero J, Wicker T.

Mol Plant Microbe Interact. 2018 Apr;31(4):420-431. doi: 10.1094/MPMI-10-17-0245-R. Epub 2018 Feb 13.

PMID:
29090630
18.

Reversing resistance: different routes and common themes across pathogens.

Allen RC, Engelstädter J, Bonhoeffer S, McDonald BA, Hall AR.

Proc Biol Sci. 2017 Sep 27;284(1863). pii: 20171619. doi: 10.1098/rspb.2017.1619. Review.

19.

Pyricularia graminis-tritici, a new Pyricularia species causing wheat blast.

Castroagudín VL, Moreira SI, Pereira DA, Moreira SS, Brunner PC, Maciel JL, Crous PW, McDonald BA, Alves E, Ceresini PC.

Persoonia. 2016 Dec;37:199-216. doi: 10.3767/003158516X692149. Epub 2016 Jun 24.

20.

A small secreted protein in Zymoseptoria tritici is responsible for avirulence on wheat cultivars carrying the Stb6 resistance gene.

Zhong Z, Marcel TC, Hartmann FE, Ma X, Plissonneau C, Zala M, Ducasse A, Confais J, Compain J, Lapalu N, Amselem J, McDonald BA, Croll D, Palma-Guerrero J.

New Phytol. 2017 Apr;214(2):619-631. doi: 10.1111/nph.14434. Epub 2017 Feb 6.

21.

Comparative Transcriptome Analyses in Zymoseptoria tritici Reveal Significant Differences in Gene Expression Among Strains During Plant Infection.

Palma-Guerrero J, Ma X, Torriani SF, Zala M, Francisco CS, Hartmann FE, Croll D, McDonald BA.

Mol Plant Microbe Interact. 2017 Mar;30(3):231-244. doi: 10.1094/MPMI-07-16-0146-R. Epub 2017 Mar 29.

22.

A fungal wheat pathogen evolved host specialization by extensive chromosomal rearrangements.

Hartmann FE, Sánchez-Vallet A, McDonald BA, Croll D.

ISME J. 2017 May;11(5):1189-1204. doi: 10.1038/ismej.2016.196. Epub 2017 Jan 24.

23.

Rapid emergence of pathogens in agro-ecosystems: global threats to agricultural sustainability and food security.

McDonald BA, Stukenbrock EH.

Philos Trans R Soc Lond B Biol Sci. 2016 Dec 5;371(1709). pii: 20160026. doi: 10.1098/rstb.2016.0026. Review.

24.

Quantitative trait locus mapping reveals complex genetic architecture of quantitative virulence in the wheat pathogen Zymoseptoria tritici.

Stewart EL, Croll D, Lendenmann MH, Sanchez-Vallet A, Hartmann FE, Palma-Guerrero J, Ma X, McDonald BA.

Mol Plant Pathol. 2018 Jan;19(1):201-216. doi: 10.1111/mpp.12515. Epub 2017 Feb 5.

25.

Mutations in the CYP51 gene reduce DMI sensitivity in Parastagonospora nodorum populations in Europe and China.

Pereira DA, McDonald BA, Brunner PC.

Pest Manag Sci. 2017 Jul;73(7):1503-1510. doi: 10.1002/ps.4486. Epub 2016 Dec 26.

PMID:
27860315
26.

Multilocus resistance evolution to azole fungicides in fungal plant pathogen populations.

Mohd-Assaad N, McDonald BA, Croll D.

Mol Ecol. 2016 Dec;25(24):6124-6142. doi: 10.1111/mec.13916. Epub 2016 Nov 30.

PMID:
27859799
27.

The genetic basis of local adaptation for pathogenic fungi in agricultural ecosystems.

Croll D, McDonald BA.

Mol Ecol. 2017 Apr;26(7):2027-2040. doi: 10.1111/mec.13870. Epub 2016 Oct 24. Review.

PMID:
27696587
28.

Emergence of wheat blast in Bangladesh was caused by a South American lineage of Magnaporthe oryzae.

Islam MT, Croll D, Gladieux P, Soanes DM, Persoons A, Bhattacharjee P, Hossain MS, Gupta DR, Rahman MM, Mahboob MG, Cook N, Salam MU, Surovy MZ, Sancho VB, Maciel JL, NhaniJúnior A, Castroagudín VL, Reges JT, Ceresini PC, Ravel S, Kellner R, Fournier E, Tharreau D, Lebrun MH, McDonald BA, Stitt T, Swan D, Talbot NJ, Saunders DG, Win J, Kamoun S.

BMC Biol. 2016 Oct 3;14(1):84.

29.

Kupffer Cells Undergo Fundamental Changes during the Development of Experimental NASH and Are Critical in Initiating Liver Damage and Inflammation.

Reid DT, Reyes JL, McDonald BA, Vo T, Reimer RA, Eksteen B.

PLoS One. 2016 Jul 25;11(7):e0159524. doi: 10.1371/journal.pone.0159524. eCollection 2016.

30.

Validation of Genome-Wide Association Studies as a Tool to Identify Virulence Factors in Parastagonospora nodorum.

Gao Y, Liu Z, Faris JD, Richards J, Brueggeman RS, Li X, Oliver RP, McDonald BA, Friesen TL.

Phytopathology. 2016 Oct;106(10):1177-1185. Epub 2016 Aug 15.

31.

Linear Correlation Analysis of Zymoseptoria tritici Aggressiveness with In Vitro Growth Rate.

Zhan F, Xie Y, Zhu W, Sun D, McDonald BA, Zhan J.

Phytopathology. 2016 Nov;106(11):1255-1261. Epub 2016 Aug 18.

32.

Population Genomics of Fungal and Oomycete Pathogens.

Grünwald NJ, McDonald BA, Milgroom MG.

Annu Rev Phytopathol. 2016 Aug 4;54:323-46. doi: 10.1146/annurev-phyto-080614-115913. Epub 2016 Jan 8. Review.

PMID:
27296138
33.

How Knowledge of Pathogen Population Biology Informs Management of Septoria Tritici Blotch.

McDonald BA, Mundt CC.

Phytopathology. 2016 Sep;106(9):948-55. doi: 10.1094/PHYTO-03-16-0131-RVW. Epub 2016 Jul 27. Review.

34.

An Improved Method for Measuring Quantitative Resistance to the Wheat Pathogen Zymoseptoria tritici Using High-Throughput Automated Image Analysis.

Stewart EL, Hagerty CH, Mikaberidze A, Mundt CC, Zhong Z, McDonald BA.

Phytopathology. 2016 Jul;106(7):782-8. doi: 10.1094/PHYTO-01-16-0018-R. Epub 2016 May 13.

35.

Genome-Wide Association Study Identifies Novel Candidate Genes for Aggressiveness, Deoxynivalenol Production, and Azole Sensitivity in Natural Field Populations of Fusarium graminearum.

Talas F, Kalih R, Miedaner T, McDonald BA.

Mol Plant Microbe Interact. 2016 May;29(5):417-30. doi: 10.1094/MPMI-09-15-0218-R. Epub 2016 Apr 13.

36.

QTL mapping of temperature sensitivity reveals candidate genes for thermal adaptation and growth morphology in the plant pathogenic fungus Zymoseptoria tritici.

Lendenmann MH, Croll D, Palma-Guerrero J, Stewart EL, McDonald BA.

Heredity (Edinb). 2016 Apr;116(4):384-94. doi: 10.1038/hdy.2015.111. Epub 2016 Jan 13.

37.

A Global Analysis of CYP51 Diversity and Azole Sensitivity in Rhynchosporium commune.

Brunner PC, Stefansson TS, Fountaine J, Richina V, McDonald BA.

Phytopathology. 2016 Apr;106(4):355-61. doi: 10.1094/PHYTO-07-15-0158-R. Epub 2016 Mar 8.

38.

Comparative transcriptomic analyses of Zymoseptoria tritici strains show complex lifestyle transitions and intraspecific variability in transcription profiles.

Palma-Guerrero J, Torriani SF, Zala M, Carter D, Courbot M, Rudd JJ, McDonald BA, Croll D.

Mol Plant Pathol. 2016 Aug;17(6):845-59. doi: 10.1111/mpp.12333. Epub 2016 Feb 8.

39.

Genome-wide analysis of Fusarium graminearum field populations reveals hotspots of recombination.

Talas F, McDonald BA.

BMC Genomics. 2015 Nov 24;16:996. doi: 10.1186/s12864-015-2166-0.

40.

The Impact of Recombination Hotspots on Genome Evolution of a Fungal Plant Pathogen.

Croll D, Lendenmann MH, Stewart E, McDonald BA.

Genetics. 2015 Nov;201(3):1213-28. doi: 10.1534/genetics.115.180968. Epub 2015 Sep 21. Erratum in: Genetics. 2016 Feb;202(2):861. Genetics. 2016 Feb;202(2):863.

41.

The Urochloa Foliar Blight and Collar Rot Pathogen Rhizoctonia solani AG-1 IA Emerged in South America Via a Host Shift from Rice.

Chavarro Mesa E, Ceresini PC, Ramos Molina LM, Pereira DA, Schurt DA, Vieira JR Jr, Poloni NM, McDonald BA.

Phytopathology. 2015 Nov;105(11):1475-86. doi: 10.1094/PHYTO-04-15-0093-R. Epub 2015 Oct 22.

42.

Is Zymoseptoria tritici a hemibiotroph?

Sánchez-Vallet A, McDonald MC, Solomon PS, McDonald BA.

Fungal Genet Biol. 2015 Jun;79:29-32. doi: 10.1016/j.fgb.2015.04.001. Review.

PMID:
26092787
43.

QTL mapping of fungicide sensitivity reveals novel genes and pleiotropy with melanization in the pathogen Zymoseptoria tritici.

Lendenmann MH, Croll D, McDonald BA.

Fungal Genet Biol. 2015 Jul;80:53-67. doi: 10.1016/j.fgb.2015.05.001. Epub 2015 May 13.

PMID:
25979163
44.

Recent advances in the Zymoseptoria tritici-wheat interaction: insights from pathogenomics.

McDonald MC, McDonald BA, Solomon PS.

Front Plant Sci. 2015 Feb 24;6:102. doi: 10.3389/fpls.2015.00102. eCollection 2015.

45.

The influence of genetic drift and selection on quantitative traits in a plant pathogenic fungus.

Stefansson TS, McDonald BA, Willi Y.

PLoS One. 2014 Nov 10;9(11):e112523. doi: 10.1371/journal.pone.0112523. eCollection 2014.

46.

Quantitative trait locus mapping of melanization in the plant pathogenic fungus Zymoseptoria tritici.

Lendenmann MH, Croll D, Stewart EL, McDonald BA.

G3 (Bethesda). 2014 Oct 29;4(12):2519-33. doi: 10.1534/g3.114.015289.

47.

Resistance to QoI Fungicides Is Widespread in Brazilian Populations of the Wheat Blast Pathogen Magnaporthe oryzae.

Castroagudín VL, Ceresini PC, de Oliveira SC, Reges JT, Maciel JL, Bonato AL, Dorigan AF, McDonald BA.

Phytopathology. 2015 Mar;105(3):284-94. doi: 10.1094/PHYTO-06-14-0184-R.

48.

Hitchhiking selection is driving intron gain in a pathogenic fungus.

Brunner PC, Torriani SF, Croll D, Stukenbrock EH, McDonald BA.

Mol Biol Evol. 2014 Jul;31(7):1741-9. doi: 10.1093/molbev/msu123. Epub 2014 Apr 7.

PMID:
24710519
49.

Measuring quantitative virulence in the wheat pathogen Zymoseptoria tritici using high-throughput automated image analysis.

Stewart EL, McDonald BA.

Phytopathology. 2014 Sep;104(9):985-92. doi: 10.1094/PHYTO-11-13-0328-R.

50.

Comparative analysis of mitochondrial genomes from closely related Rhynchosporium species reveals extensive intron invasion.

Torriani SF, Penselin D, Knogge W, Felder M, Taudien S, Platzer M, McDonald BA, Brunner PC.

Fungal Genet Biol. 2014 Jan;62:34-42. doi: 10.1016/j.fgb.2013.11.001. Epub 2013 Nov 13.

Supplemental Content

Loading ...
Support Center