Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 30

1.

Revisiting the Fisher-Kolmogorov-Petrovsky-Piskunov equation to interpret the spreading-extinction dichotomy.

El-Hachem M, McCue SW, Jin W, Du Y, Simpson MJ.

Proc Math Phys Eng Sci. 2019 Sep;475(2229):20190378. doi: 10.1098/rspa.2019.0378. Epub 2019 Sep 4.

PMID:
31611732
2.

Mathematical models incorporating a multi-stage cell cycle replicate normally-hidden inherent synchronization in cell proliferation.

Vittadello ST, McCue SW, Gunasingh G, Haass NK, Simpson MJ.

J R Soc Interface. 2019 Aug 30;16(157):20190382. doi: 10.1098/rsif.2019.0382. Epub 2019 Aug 21.

PMID:
31431185
3.

Mathematical Models for Cell Migration with Real-Time Cell Cycle Dynamics.

Vittadello ST, McCue SW, Gunasingh G, Haass NK, Simpson MJ.

Biophys J. 2018 Mar 13;114(5):1241-1253. doi: 10.1016/j.bpj.2017.12.041.

4.

Extended logistic growth model for heterogeneous populations.

Jin W, McCue SW, Simpson MJ.

J Theor Biol. 2018 May 14;445:51-61. doi: 10.1016/j.jtbi.2018.02.027. Epub 2018 Feb 23.

PMID:
29481822
5.

Inferring parameters for a lattice-free model of cell migration and proliferation using experimental data.

Browning AP, McCue SW, Binny RN, Plank MJ, Shah ET, Simpson MJ.

J Theor Biol. 2018 Jan 21;437:251-260. doi: 10.1016/j.jtbi.2017.10.032. Epub 2017 Nov 1.

PMID:
29102643
6.

A computational modelling framework to quantify the effects of passaging cell lines.

Jin W, Penington CJ, McCue SW, Simpson MJ.

PLoS One. 2017 Jul 27;12(7):e0181941. doi: 10.1371/journal.pone.0181941. eCollection 2017.

7.

A Bayesian Computational Approach to Explore the Optimal Duration of a Cell Proliferation Assay.

Browning AP, McCue SW, Simpson MJ.

Bull Math Biol. 2017 Aug;79(8):1888-1906. doi: 10.1007/s11538-017-0311-4. Epub 2017 Jun 28.

PMID:
28660546
8.

The effect of surface tension on steadily translating bubbles in an unbounded Hele-Shaw cell.

Green CC, Lustri CJ, McCue SW.

Proc Math Phys Eng Sci. 2017 May;473(2201):20170050. doi: 10.1098/rspa.2017.0050. Epub 2017 May 3.

9.

A model for one-dimensional morphoelasticity and its application to fibroblast-populated collagen lattices.

Menon SN, Hall CL, McCue SW, McElwain DLS.

Biomech Model Mechanobiol. 2017 Oct;16(5):1743-1763. doi: 10.1007/s10237-017-0917-3. Epub 2017 May 18.

PMID:
28523375
10.

Logistic Proliferation of Cells in Scratch Assays is Delayed.

Jin W, Shah ET, Penington CJ, McCue SW, Maini PK, Simpson MJ.

Bull Math Biol. 2017 May;79(5):1028-1050. doi: 10.1007/s11538-017-0267-4. Epub 2017 Mar 23.

PMID:
28337676
11.
12.
13.

Reproducibility of scratch assays is affected by the initial degree of confluence: Experiments, modelling and model selection.

Jin W, Shah ET, Penington CJ, McCue SW, Chopin LK, Simpson MJ.

J Theor Biol. 2016 Feb 7;390:136-45. doi: 10.1016/j.jtbi.2015.10.040. Epub 2015 Nov 29.

PMID:
26646767
14.

Simulating droplet motion on virtual leaf surfaces.

Mayo LC, McCue SW, Moroney TJ, Forster WA, Kempthorne DM, Belward JA, Turner IW.

R Soc Open Sci. 2015 May 20;2(5):140528. doi: 10.1098/rsos.140528. eCollection 2015 May.

15.

Saffman-Taylor fingers with kinetic undercooling.

Gardiner BP, McCue SW, Dallaston MC, Moroney TJ.

Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Feb;91(2):023016. Epub 2015 Feb 23.

PMID:
25768606
16.

Including nonequilibrium interface kinetics in a continuum model for melting nanoscaled particles.

Back JM, McCue SW, Moroney TJ.

Sci Rep. 2014 Nov 17;4:7066. doi: 10.1038/srep07066.

17.

Characterizing transport through a crowded environment with different obstacle sizes.

Ellery AJ, Simpson MJ, McCue SW, Baker RE.

J Chem Phys. 2014 Feb 7;140(5):054108. doi: 10.1063/1.4864000.

PMID:
24511923
18.

Simplified approach for calculating moments of action for linear reaction-diffusion equations.

Ellery AJ, Simpson MJ, McCue SW, Baker RE.

Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Nov;88(5):054102. Epub 2013 Nov 15.

PMID:
24329386
19.

Comment on "Local accumulation times for source, diffusion, and degradation models in two and three dimensions" [J. Chem. Phys. 138, 104121 (2013)].

Ellery AJ, Simpson MJ, McCue SW.

J Chem Phys. 2013 Jul 7;139(1):017101. doi: 10.1063/1.4811832. No abstract available.

PMID:
23822325
20.

Gravity-driven fingering simulations for a thin liquid film flowing down the outside of a vertical cylinder.

Mayo LC, McCue SW, Moroney TJ.

Phys Rev E Stat Nonlin Soft Matter Phys. 2013 May;87(5):053018. Epub 2013 May 28.

PMID:
23767631
21.

Travelling waves for a velocity-jump model of cell migration and proliferation.

Simpson MJ, Foy BH, McCue SW.

Math Biosci. 2013 Aug;244(2):98-106. doi: 10.1016/j.mbs.2013.04.010. Epub 2013 May 7.

PMID:
23665453
22.

Moments of action provide insight into critical times for advection-diffusion-reaction processes.

Ellery AJ, Simpson MJ, McCue SW, Baker RE.

Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Sep;86(3 Pt 1):031136. Epub 2012 Sep 25.

PMID:
23030895
23.

Critical time scales for advection-diffusion-reaction processes.

Ellery AJ, Simpson MJ, McCue SW, Baker RE.

Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Apr;85(4 Pt 1):041135. Epub 2012 Apr 23.

PMID:
22680446
24.

Modelling the interaction of keratinocytes and fibroblasts during normal and abnormal wound healing processes.

Menon SN, Flegg JA, McCue SW, Schugart RC, Dawson RA, McElwain DL.

Proc Biol Sci. 2012 Aug 22;279(1741):3329-38. doi: 10.1098/rspb.2012.0319. Epub 2012 May 23.

25.

Clinical strategies for the alleviation of contractures from a predictive mathematical model of dermal repair.

Murphy KE, McCue SW, McElwain DL.

Wound Repair Regen. 2012 Mar-Apr;20(2):194-202. doi: 10.1111/j.1524-475X.2012.00775.x. Epub 2012 Feb 7.

PMID:
22313453
26.

Velocity-jump models with crowding effects.

Treloar KK, Simpson MJ, McCue SW.

Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Dec;84(6 Pt 1):061920. Epub 2011 Dec 28.

PMID:
22304129
27.

A fibrocontractive mechanochemical model of dermal wound closure incorporating realistic growth factor kinetics.

Murphy KE, Hall CL, Maini PK, McCue SW, McElwain DL.

Bull Math Biol. 2012 May;74(5):1143-70. doi: 10.1007/s11538-011-9712-y. Epub 2012 Jan 13.

PMID:
22246694
28.

Models of collective cell spreading with variable cell aspect ratio: a motivation for degenerate diffusion models.

Simpson MJ, Baker RE, McCue SW.

Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Feb;83(2 Pt 1):021901. Epub 2011 Feb 2.

PMID:
21405857
29.

A two-compartment mechanochemical model of the roles of transforming growth factor β and tissue tension in dermal wound healing.

Murphy KE, Hall CL, McCue SW, Sean McElwain DL.

J Theor Biol. 2011 Mar 7;272(1):145-59. doi: 10.1016/j.jtbi.2010.12.011. Epub 2010 Dec 17.

PMID:
21168423
30.

Nanoparticle melting as a stefan moving boundary problem.

Wu B, Tillman P, McCue SW, Hill JM.

J Nanosci Nanotechnol. 2009 Feb;9(2):885-8.

PMID:
19441414

Supplemental Content

Loading ...
Support Center