Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 171

1.
2.

Potential Therapeutic Effects of Mepacrine against Clostridium perfringens Enterotoxin in a Mouse Model of Enterotoxemia.

Navarro MA, Shrestha A, Freedman JC, Beingesser J, McClane BA, Uzal FA.

Infect Immun. 2019 Mar 25;87(4). pii: e00670-18. doi: 10.1128/IAI.00670-18. Print 2019 Apr.

PMID:
30642896
3.

NanI Sialidase Is an Important Contributor to Clostridium perfringens Type F Strain F4969 Intestinal Colonization in Mice.

Navarro MA, Li J, McClane BA, Morrell E, Beingesser J, Uzal FA.

Infect Immun. 2018 Nov 20;86(12). pii: e00462-18. doi: 10.1128/IAI.00462-18. Print 2018 Dec.

4.

Enterotoxic Clostridia: Clostridium perfringens Enteric Diseases.

Shrestha A, Uzal FA, McClane BA.

Microbiol Spectr. 2018 Sep;6(5). doi: 10.1128/microbiolspec.GPP3-0003-2017.

PMID:
30238869
5.

NanR Regulates Sporulation and Enterotoxin Production by Clostridium perfringens Type F Strain F4969.

Mi E, Li J, McClane BA.

Infect Immun. 2018 Sep 21;86(10). pii: e00416-18. doi: 10.1128/IAI.00416-18. Print 2018 Oct.

6.

Comparative pathogenesis of enteric clostridial infections in humans and animals.

Uzal FA, Navarro MA, Li J, Freedman JC, Shrestha A, McClane BA.

Anaerobe. 2018 Oct;53:11-20. doi: 10.1016/j.anaerobe.2018.06.002. Epub 2018 Jun 5. Review.

PMID:
29883627
7.

Expansion of the Clostridium perfringens toxin-based typing scheme.

Rood JI, Adams V, Lacey J, Lyras D, McClane BA, Melville SB, Moore RJ, Popoff MR, Sarker MR, Songer JG, Uzal FA, Van Immerseel F.

Anaerobe. 2018 Oct;53:5-10. doi: 10.1016/j.anaerobe.2018.04.011. Epub 2018 Apr 20. Review.

PMID:
29866424
8.

Mechanisms of Action and Cell Death Associated with Clostridium perfringens Toxins.

Navarro MA, McClane BA, Uzal FA.

Toxins (Basel). 2018 May 22;10(5). pii: E212. doi: 10.3390/toxins10050212. Review.

9.

Evidence that Clostridium perfringens Enterotoxin-Induced Intestinal Damage and Enterotoxemic Death in Mice Can Occur Independently of Intestinal Caspase-3 Activation.

Freedman JC, Navarro MA, Morrell E, Beingesser J, Shrestha A, McClane BA, Uzal FA.

Infect Immun. 2018 Jun 21;86(7). pii: e00931-17. doi: 10.1128/IAI.00931-17. Print 2018 Jul.

10.
11.

Native or Proteolytically Activated NanI Sialidase Enhances the Binding and Cytotoxic Activity of Clostridium perfringens Enterotoxin and Beta Toxin.

Theoret JR, Li J, Navarro MA, Garcia JP, Uzal FA, McClane BA.

Infect Immun. 2017 Dec 19;86(1). pii: e00730-17. doi: 10.1128/IAI.00730-17. Print 2018 Jan.

12.

The Potential Therapeutic Agent Mepacrine Protects Caco-2 Cells against Clostridium perfringens Enterotoxin Action.

Freedman JC, Hendricks MR, McClane BA.

mSphere. 2017 Aug 30;2(4). pii: e00352-17. doi: 10.1128/mSphere.00352-17. eCollection 2017 Jul-Aug.

13.

Antibody against Microbial Neuraminidases Recognizes Human Sialidase 3 (NEU3): the Neuraminidase/Sialidase Superfamily Revisited.

Feng C, Li J, Snyder G, Huang W, Goldblum SE, Chen WH, Wang LX, McClane BA, Cross AS.

MBio. 2017 Jun 27;8(3). pii: e00078-17. doi: 10.1128/mBio.00078-17.

14.

NanR Regulates nanI Sialidase Expression by Clostridium perfringens F4969, a Human Enteropathogenic Strain.

Li J, Evans DR, Freedman JC, McClane BA.

Infect Immun. 2017 Aug 18;85(9). pii: e00241-17. doi: 10.1128/IAI.00241-17. Print 2017 Sep.

15.

CodY Promotes Sporulation and Enterotoxin Production by Clostridium perfringens Type A Strain SM101.

Li J, Freedman JC, Evans DR, McClane BA.

Infect Immun. 2017 Feb 23;85(3). pii: e00855-16. doi: 10.1128/IAI.00855-16. Print 2017 Mar.

16.

Bystander Host Cell Killing Effects of Clostridium perfringens Enterotoxin.

Shrestha A, Hendricks MR, Bomberger JM, McClane BA.

MBio. 2016 Dec 13;7(6). pii: e02015-16. doi: 10.1128/mBio.02015-16.

17.

Clostridium perfringens Sialidases: Potential Contributors to Intestinal Pathogenesis and Therapeutic Targets.

Li J, Uzal FA, McClane BA.

Toxins (Basel). 2016 Nov 19;8(11). pii: E341. Review.

18.

Clostridium perfringens Sporulation and Sporulation-Associated Toxin Production.

Li J, Paredes-Sabja D, Sarker MR, McClane BA.

Microbiol Spectr. 2016 Jun;4(3). doi: 10.1128/microbiolspec.TBS-0022-2015. Review.

19.

New insights into Clostridium perfringens epsilon toxin activation and action on the brain during enterotoxemia.

Freedman JC, McClane BA, Uzal FA.

Anaerobe. 2016 Oct;41:27-31. doi: 10.1016/j.anaerobe.2016.06.006. Epub 2016 Jun 16. Review.

PMID:
27321761
20.

The interaction of Clostridium perfringens enterotoxin with receptor claudins.

Shrestha A, Uzal FA, McClane BA.

Anaerobe. 2016 Oct;41:18-26. doi: 10.1016/j.anaerobe.2016.04.011. Epub 2016 Apr 16. Review.

21.

Clostridium perfringens Enterotoxin: Action, Genetics, and Translational Applications.

Freedman JC, Shrestha A, McClane BA.

Toxins (Basel). 2016 Mar 16;8(3). pii: E73. doi: 10.3390/toxins8030073. Review.

22.

NanI Sialidase, CcpA, and CodY Work Together To Regulate Epsilon Toxin Production by Clostridium perfringens Type D Strain CN3718.

Li J, Freedman JC, McClane BA.

J Bacteriol. 2015 Oct;197(20):3339-53. doi: 10.1128/JB.00349-15. Epub 2015 Aug 10.

23.

Virulence Plasmids of Spore-Forming Bacteria.

Adams V, Li J, Wisniewski JA, Uzal FA, Moore RJ, McClane BA, Rood JI.

Microbiol Spectr. 2014 Dec;2(6). doi: 10.1128/microbiolspec.PLAS-0024-2014. Review.

PMID:
26104459
24.

Characterization of Clostridium perfringens TpeL toxin gene carriage, production, cytotoxic contributions, and trypsin sensitivity.

Chen J, McClane BA.

Infect Immun. 2015 Jun;83(6):2369-81. doi: 10.1128/IAI.03136-14. Epub 2015 Mar 30.

25.

Structure-function analysis of peptide signaling in the Clostridium perfringens Agr-like quorum sensing system.

Ma M, Li J, McClane BA.

J Bacteriol. 2015 May;197(10):1807-18. doi: 10.1128/JB.02614-14. Epub 2015 Mar 16.

26.

Animal models to study the pathogenesis of human and animal Clostridium perfringens infections.

Uzal FA, McClane BA, Cheung JK, Theoret J, Garcia JP, Moore RJ, Rood JI.

Vet Microbiol. 2015 Aug 31;179(1-2):23-33. doi: 10.1016/j.vetmic.2015.02.013. Epub 2015 Feb 25. Review.

27.

Identification and characterization of Clostridium perfringens beta toxin variants with differing trypsin sensitivity and in vitro cytotoxicity activity.

Theoret JR, Uzal FA, McClane BA.

Infect Immun. 2015 Apr;83(4):1477-86. doi: 10.1128/IAI.02864-14. Epub 2015 Feb 2.

28.
29.

Proteolytic processing and activation of Clostridium perfringens epsilon toxin by caprine small intestinal contents.

Freedman JC, Li J, Uzal FA, McClane BA.

MBio. 2014 Oct 21;5(5):e01994-14. doi: 10.1128/mBio.01994-14.

30.

Clostridium perfringens type A-E toxin plasmids.

Freedman JC, Theoret JR, Wisniewski JA, Uzal FA, Rood JI, McClane BA.

Res Microbiol. 2015 May;166(4):264-79. doi: 10.1016/j.resmic.2014.09.004. Epub 2014 Oct 2. Review.

31.

A synthetic peptide corresponding to the extracellular loop 2 region of claudin-4 protects against Clostridium perfringens enterotoxin in vitro and in vivo.

Shrestha A, Robertson SL, Garcia J, Beingasser J, McClane BA, Uzal FA.

Infect Immun. 2014 Nov;82(11):4778-88. doi: 10.1128/IAI.02453-14. Epub 2014 Aug 25.

32.

Contributions of NanI sialidase to Caco-2 cell adherence by Clostridium perfringens type A and C strains causing human intestinal disease.

Li J, McClane BA.

Infect Immun. 2014 Nov;82(11):4620-30. doi: 10.1128/IAI.02322-14. Epub 2014 Aug 18.

33.

Structure of a C. perfringens enterotoxin mutant in complex with a modified Claudin-2 extracellular loop 2.

Yelland TS, Naylor CE, Bagoban T, Savva CG, Moss DS, McClane BA, Blasig IE, Popoff M, Basak AK.

J Mol Biol. 2014 Sep 9;426(18):3134-3147. doi: 10.1016/j.jmb.2014.07.001. Epub 2014 Jul 11.

PMID:
25020226
34.

Synergistic effects of Clostridium perfringens enterotoxin and beta toxin in rabbit small intestinal loops.

Ma M, Gurjar A, Theoret JR, Garcia JP, Beingesser J, Freedman JC, Fisher DJ, McClane BA, Uzal FA.

Infect Immun. 2014 Jul;82(7):2958-70. doi: 10.1128/IAI.01848-14. Epub 2014 Apr 28.

35.

Towards an understanding of the role of Clostridium perfringens toxins in human and animal disease.

Uzal FA, Freedman JC, Shrestha A, Theoret JR, Garcia J, Awad MM, Adams V, Moore RJ, Rood JI, McClane BA.

Future Microbiol. 2014;9(3):361-77. doi: 10.2217/fmb.13.168. Review.

36.

Clostridium perfringens type A enterotoxin damages the rabbit colon.

Garcia JP, Li J, Shrestha A, Freedman JC, Beingesser J, McClane BA, Uzal FA.

Infect Immun. 2014 Jun;82(6):2211-8. doi: 10.1128/IAI.01659-14. Epub 2014 Mar 18.

37.

The Sialidases of Clostridium perfringens type D strain CN3718 differ in their properties and sensitivities to inhibitors.

Li J, McClane BA.

Appl Environ Microbiol. 2014 Mar;80(5):1701-9. doi: 10.1128/AEM.03440-13. Epub 2013 Dec 27.

38.

CodY is a global regulator of virulence-associated properties for Clostridium perfringens type D strain CN3718.

Li J, Ma M, Sarker MR, McClane BA.

MBio. 2013 Oct 8;4(5):e00770-13. doi: 10.1128/mBio.00770-13.

39.

Host cell-induced signaling causes Clostridium perfringens to upregulate production of toxins important for intestinal infections.

Chen J, Ma M, Uzal FA, McClane BA.

Gut Microbes. 2014 Jan-Feb;5(1):96-107. doi: 10.4161/gmic.26419. Epub 2013 Sep 10. Review.

40.

Toxin plasmids of Clostridium perfringens.

Li J, Adams V, Bannam TL, Miyamoto K, Garcia JP, Uzal FA, Rood JI, McClane BA.

Microbiol Mol Biol Rev. 2013 Jun;77(2):208-33. doi: 10.1128/MMBR.00062-12. Review.

41.

Epsilon toxin is essential for the virulence of Clostridium perfringens type D infection in sheep, goats, and mice.

Garcia JP, Adams V, Beingesser J, Hughes ML, Poon R, Lyras D, Hill A, McClane BA, Rood JI, Uzal FA.

Infect Immun. 2013 Jul;81(7):2405-14. doi: 10.1128/IAI.00238-13. Epub 2013 Apr 29.

42.

Human claudin-8 and -14 are receptors capable of conveying the cytotoxic effects of Clostridium perfringens enterotoxin.

Shrestha A, McClane BA.

MBio. 2013 Jan 15;4(1). pii: e00594-12. doi: 10.1128/mBio.00594-12.

43.

Genotypic and phenotypic characterization of Clostridium perfringens isolates from Darmbrand cases in post-World War II Germany.

Ma M, Li J, McClane BA.

Infect Immun. 2012 Dec;80(12):4354-63. doi: 10.1128/IAI.00818-12. Epub 2012 Oct 1.

44.

Identification of a lambda toxin-negative Clostridium perfringens strain that processes and activates epsilon prototoxin intracellularly.

Harkness JM, Li J, McClane BA.

Anaerobe. 2012 Oct;18(5):546-52. doi: 10.1016/j.anaerobe.2012.09.001. Epub 2012 Sep 11.

45.

Cysteine-scanning mutagenesis supports the importance of Clostridium perfringens enterotoxin amino acids 80 to 106 for membrane insertion and pore formation.

Chen J, Theoret JR, Shrestha A, Smedley JG 3rd, McClane BA.

Infect Immun. 2012 Dec;80(12):4078-88. doi: 10.1128/IAI.00069-12. Epub 2012 Sep 10.

46.

Animal models to study the pathogenesis of enterotoxigenic Clostridium perfringens infections.

Uzal FA, McClane BA.

Microbes Infect. 2012 Oct;14(12):1009-16. doi: 10.1016/j.micinf.2012.06.003. Epub 2012 Jun 17. Review.

47.

Role of the Agr-like quorum-sensing system in regulating toxin production by Clostridium perfringens type B strains CN1793 and CN1795.

Chen J, McClane BA.

Infect Immun. 2012 Sep;80(9):3008-17. doi: 10.1128/IAI.00438-12. Epub 2012 Jun 11.

48.

Enterotoxigenic Clostridium perfringens: detection and identification.

Miyamoto K, Li J, McClane BA.

Microbes Environ. 2012;27(4):343-9. Epub 2012 Apr 14. Review.

49.

The effect of Clostridium perfringens type C strain CN3685 and its isogenic beta toxin null mutant in goats.

Garcia JP, Beingesser J, Fisher DJ, Sayeed S, McClane BA, Posthaus H, Uzal FA.

Vet Microbiol. 2012 Jun 15;157(3-4):412-9. doi: 10.1016/j.vetmic.2012.01.005. Epub 2012 Jan 11.

50.

Sialidases affect the host cell adherence and epsilon toxin-induced cytotoxicity of Clostridium perfringens type D strain CN3718.

Li J, Sayeed S, Robertson S, Chen J, McClane BA.

PLoS Pathog. 2011 Dec;7(12):e1002429. doi: 10.1371/journal.ppat.1002429. Epub 2011 Dec 8.

Supplemental Content

Loading ...
Support Center