Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 43

1.

Angiotensin II-induced redox-sensitive SGLT1 and 2 expression promotes high glucose-induced endothelial cell senescence.

Khemais-Benkhiat S, Belcastro E, Idris-Khodja N, Park SH, Amoura L, Abbas M, Auger C, Kessler L, Mayoux E, Toti F, Schini-Kerth VB.

J Cell Mol Med. 2019 Mar 30. doi: 10.1111/jcmm.14233. [Epub ahead of print]

2.

Empagliflozin Increases Cardiac Energy Production in Diabetes: Novel Translational Insights Into the Heart Failure Benefits of SGLT2 Inhibitors.

Verma S, Rawat S, Ho KL, Wagg CS, Zhang L, Teoh H, Dyck JE, Uddin GM, Oudit GY, Mayoux E, Lehrke M, Marx N, Lopaschuk GD.

JACC Basic Transl Sci. 2018 Aug 26;3(5):575-587. doi: 10.1016/j.jacbts.2018.07.006. eCollection 2018 Oct.

3.

Single dose of empagliflozin increases in vivo cardiac energy status in diabetic db/db mice.

Abdurrachim D, Manders E, Nicolay K, Mayoux E, Prompers JJ.

Cardiovasc Res. 2018 Dec 1;114(14):1843-1844. doi: 10.1093/cvr/cvy246. No abstract available.

PMID:
30295756
4.

The Favorable Effect of Empagliflozin on Erectile Function in an Experimental Model of Type 2 Diabetes.

Assaly R, Gorny D, Compagnie S, Mayoux E, Bernabe J, Alexandre L, Giuliano F, Behr-Roussel D.

J Sex Med. 2018 Sep;15(9):1224-1234. doi: 10.1016/j.jsxm.2018.07.002. Epub 2018 Aug 23.

PMID:
30145094
5.

Glycemic control by the SGLT2 inhibitor empagliflozin decreases aortic stiffness, renal resistivity index and kidney injury.

Aroor AR, Das NA, Carpenter AJ, Habibi J, Jia G, Ramirez-Perez FI, Martinez-Lemus L, Manrique-Acevedo CM, Hayden MR, Duta C, Nistala R, Mayoux E, Padilla J, Chandrasekar B, DeMarco VG.

Cardiovasc Diabetol. 2018 Jul 30;17(1):108. doi: 10.1186/s12933-018-0750-8.

6.

Organic anion transporter OAT3 enhances the glucosuric effect of the SGLT2 inhibitor empagliflozin.

Fu Y, Breljak D, Onishi A, Batz F, Patel R, Huang W, Song P, Freeman B, Mayoux E, Koepsell H, Anzai N, Nigam SK, Sabolic I, Vallon V.

Am J Physiol Renal Physiol. 2018 Aug 1;315(2):F386-F394. doi: 10.1152/ajprenal.00503.2017. Epub 2018 Feb 7.

7.

The SGLT2 inhibitor empagliflozin improves the primary diabetic complications in ZDF rats.

Steven S, Oelze M, Hanf A, Kröller-Schön S, Kashani F, Roohani S, Welschof P, Kopp M, Gödtel-Armbrust U, Xia N, Li H, Schulz E, Lackner KJ, Wojnowski L, Bottari SP, Wenzel P, Mayoux E, Münzel T, Daiber A.

Redox Biol. 2017 Oct;13:370-385. doi: 10.1016/j.redox.2017.06.009. Epub 2017 Jun 22.

8.

Empagliflozin Improves Left Ventricular Diastolic Dysfunction in a Genetic Model of Type 2 Diabetes.

Hammoudi N, Jeong D, Singh R, Farhat A, Komajda M, Mayoux E, Hajjar R, Lebeche D.

Cardiovasc Drugs Ther. 2017 Jun;31(3):233-246. doi: 10.1007/s10557-017-6734-1.

9.

SGLT2 Inhibition by Empagliflozin Promotes Fat Utilization and Browning and Attenuates Inflammation and Insulin Resistance by Polarizing M2 Macrophages in Diet-induced Obese Mice.

Xu L, Nagata N, Nagashimada M, Zhuge F, Ni Y, Chen G, Mayoux E, Kaneko S, Ota T.

EBioMedicine. 2017 Jun;20:137-149. doi: 10.1016/j.ebiom.2017.05.028. Epub 2017 May 26.

10.

Sodium glucose transporter 2 (SGLT2) inhibition with empagliflozin improves cardiac diastolic function in a female rodent model of diabetes.

Habibi J, Aroor AR, Sowers JR, Jia G, Hayden MR, Garro M, Barron B, Mayoux E, Rector RS, Whaley-Connell A, DeMarco VG.

Cardiovasc Diabetol. 2017 Jan 13;16(1):9. doi: 10.1186/s12933-016-0489-z.

11.

Response to Comment on Ferrannini et al. Diabetes Care 2016;39:1108-1114. Comment on Mudaliar et al. Diabetes Care 2016;39:1115-1122.

Ferrannini E, Mark M, Mayoux E.

Diabetes Care. 2016 Nov;39(11):e196-e197. No abstract available.

PMID:
27926896
12.
13.

Empagliflozin Protects against Diet-Induced NLRP-3 Inflammasome Activation and Lipid Accumulation.

Benetti E, Mastrocola R, Vitarelli G, Cutrin JC, Nigro D, Chiazza F, Mayoux E, Collino M, Fantozzi R.

J Pharmacol Exp Ther. 2016 Oct;359(1):45-53. doi: 10.1124/jpet.116.235069. Epub 2016 Jul 20.

PMID:
27440421
14.

CV Protection in the EMPA-REG OUTCOME Trial: A "Thrifty Substrate" Hypothesis.

Ferrannini E, Mark M, Mayoux E.

Diabetes Care. 2016 Jul;39(7):1108-14. doi: 10.2337/dc16-0330.

PMID:
27289126
15.

Empagliflozin, via Switching Metabolism Toward Lipid Utilization, Moderately Increases LDL Cholesterol Levels Through Reduced LDL Catabolism.

Briand F, Mayoux E, Brousseau E, Burr N, Urbain I, Costard C, Mark M, Sulpice T.

Diabetes. 2016 Jul;65(7):2032-8. doi: 10.2337/db16-0049. Epub 2016 Apr 5.

16.

Characterization of Micro-RNA Changes during the Progression of Type 2 Diabetes in Zucker Diabetic Fatty Rats.

Delic D, Eisele C, Schmid R, Luippold G, Mayoux E, Grempler R.

Int J Mol Sci. 2016 May 3;17(5). pii: E665. doi: 10.3390/ijms17050665.

17.

The Effects of Empagliflozin, an SGLT2 Inhibitor, on Pancreatic β-Cell Mass and Glucose Homeostasis in Type 1 Diabetes.

Cheng ST, Chen L, Li SY, Mayoux E, Leung PS.

PLoS One. 2016 Jan 25;11(1):e0147391. doi: 10.1371/journal.pone.0147391. eCollection 2016.

18.

The SGLT2 inhibitor empagliflozin improves insulin sensitivity in db/db mice both as monotherapy and in combination with linagliptin.

Kern M, Klöting N, Mark M, Mayoux E, Klein T, Blüher M.

Metabolism. 2016 Feb;65(2):114-23. doi: 10.1016/j.metabol.2015.10.010. Epub 2015 Nov 13.

PMID:
26773934
19.

A comprehensive review of the pharmacodynamics of the SGLT2 inhibitor empagliflozin in animals and humans.

Michel MC, Mayoux E, Vallon V.

Naunyn Schmiedebergs Arch Pharmacol. 2015 Aug;388(8):801-16. doi: 10.1007/s00210-015-1134-1. Epub 2015 Jun 26. Review.

20.

The sodium-glucose co-transporter 2 inhibitor empagliflozin improves diabetes-induced vascular dysfunction in the streptozotocin diabetes rat model by interfering with oxidative stress and glucotoxicity.

Oelze M, Kröller-Schön S, Welschof P, Jansen T, Hausding M, Mikhed Y, Stamm P, Mader M, Zinßius E, Agdauletova S, Gottschlich A, Steven S, Schulz E, Bottari SP, Mayoux E, Münzel T, Daiber A.

PLoS One. 2014 Nov 17;9(11):e112394. doi: 10.1371/journal.pone.0112394. eCollection 2014.

21.

Combination of the sodium-glucose cotransporter-2 inhibitor empagliflozin with orlistat or sibutramine further improves the body-weight reduction and glucose homeostasis of obese rats fed a cafeteria diet.

Vickers SP, Cheetham SC, Headland KR, Dickinson K, Grempler R, Mayoux E, Mark M, Klein T.

Diabetes Metab Syndr Obes. 2014 Jul 1;7:265-75. doi: 10.2147/DMSO.S58786. eCollection 2014.

22.

The sodium glucose cotransporter type 2 inhibitor empagliflozin preserves β-cell mass and restores glucose homeostasis in the male zucker diabetic fatty rat.

Hansen HH, Jelsing J, Hansen CF, Hansen G, Vrang N, Mark M, Klein T, Mayoux E.

J Pharmacol Exp Ther. 2014 Sep;350(3):657-64. doi: 10.1124/jpet.114.213454. Epub 2014 Jul 3.

PMID:
24993361
23.

The SGLT2 inhibitor empagliflozin ameliorates early features of diabetic nephropathy in BTBR ob/ob type 2 diabetic mice with and without hypertension.

Gembardt F, Bartaun C, Jarzebska N, Mayoux E, Todorov VT, Hohenstein B, Hugo C.

Am J Physiol Renal Physiol. 2014 Aug 1;307(3):F317-25. doi: 10.1152/ajprenal.00145.2014. Epub 2014 Jun 18.

24.

Fingerprints of hSGLT5 sugar and cation selectivity.

Ghezzi C, Gorraitz E, Hirayama BA, Loo DD, Grempler R, Mayoux E, Wright EM.

Am J Physiol Cell Physiol. 2014 May 1;306(9):C864-70. doi: 10.1152/ajpcell.00027.2014. Epub 2014 Feb 26.

25.

SGLT2 inhibitor empagliflozin reduces renal growth and albuminuria in proportion to hyperglycemia and prevents glomerular hyperfiltration in diabetic Akita mice.

Vallon V, Gerasimova M, Rose MA, Masuda T, Satriano J, Mayoux E, Koepsell H, Thomson SC, Rieg T.

Am J Physiol Renal Physiol. 2014 Jan;306(2):F194-204. doi: 10.1152/ajprenal.00520.2013. Epub 2013 Nov 13.

26.

Increase in SGLT1-mediated transport explains renal glucose reabsorption during genetic and pharmacological SGLT2 inhibition in euglycemia.

Rieg T, Masuda T, Gerasimova M, Mayoux E, Platt K, Powell DR, Thomson SC, Koepsell H, Vallon V.

Am J Physiol Renal Physiol. 2014 Jan;306(2):F188-93. doi: 10.1152/ajprenal.00518.2013. Epub 2013 Nov 13.

27.

Evaluation of body fat composition after linagliptin treatment in a rat model of diet-induced obesity: a magnetic resonance spectroscopy study in comparison with sibutramine.

Klein T, Niessen HG, Ittrich C, Mayoux E, Mueller HP, Cheetham S, Stiller D, Kassubek J, Mark M.

Diabetes Obes Metab. 2012 Nov;14(11):1050-3. doi: 10.1111/j.1463-1326.2012.01629.x. Epub 2012 Jun 25.

PMID:
22651241
28.

Alfuzosin improves penile erection triggered by apomorphine in spontaneous hypertensive rats.

Mayoux E, Ramirez JF, Pouyet T, Barras M, Arbilla S, Galzin AM.

Eur Urol. 2004 Jan;45(1):110-6; discussion 116.

PMID:
14667526
29.

Effects of C-type natriuretic peptide on rat cardiac contractility.

Brusq JM, Mayoux E, Guigui L, Kirilovsky J.

Br J Pharmacol. 1999 Sep;128(1):206-12.

30.

Subcellular creatine kinase alterations. Implications in heart failure.

De Sousa E, Veksler V, Minajeva A, Kaasik A, Mateo P, Mayoux E, Hoerter J, Bigard X, Serrurier B, Ventura-Clapier R.

Circ Res. 1999 Jul 9;85(1):68-76.

PMID:
10400912
31.

Effects of acidosis and alkalosis on mechanical properties of hypertrophied rat heart fiber bundles.

Mayoux E, Coutry N, Lechêne P, Marotte F, Hoffmann C, Ventura-Clapier R.

Am J Physiol. 1994 May;266(5 Pt 2):H2051-60.

PMID:
8203603
32.

Paracrine effects of endocardial endothelial cells on myocyte contraction mediated via endothelin.

Mebazaa A, Mayoux E, Maeda K, Martin LD, Lakatta EG, Robotham JL, Shah AM.

Am J Physiol. 1993 Nov;265(5 Pt 2):H1841-6.

PMID:
8238598
33.

Mechanical properties of rat cardiac skinned fibers are altered by chronic growth hormone hypersecretion.

Mayoux E, Ventura-Clapier R, Timsit J, Béhar-Cohen F, Hoffmann C, Mercadier JJ.

Circ Res. 1993 Jan;72(1):57-64.

PMID:
8417847
34.
35.

Membrane proteins of the myocytes in cardiac overload.

Mansier P, Chevalier B, Mayoux E, Charlemagne D, Ollivier L, Callens-el Amrani F, Swynghedauw B.

Acta Cardiol. 1991;46(3):299-307.

PMID:
1656672
36.

The mechanism of positive inotropy induced by adenosine triphosphate in rat heart.

Scamps F, Legssyer A, Mayoux E, Vassort G.

Circ Res. 1990 Oct;67(4):1007-16.

PMID:
1698571
37.

Calcium current in single cells isolated from normal and hypertrophied rat heart. Effects of beta-adrenergic stimulation.

Scamps F, Mayoux E, Charlemagne D, Vassort G.

Circ Res. 1990 Jul;67(1):199-208.

PMID:
1973082
38.

Normal responsiveness to external Ca and to Ca-channel modifying agents in hypertrophied rat heart.

Callens-el Amrani F, Mayoux E, Mouas C, Clapier-Ventura R, Henzel D, Charlemagne D, Swynghedauw B.

Am J Physiol. 1990 Jun;258(6 Pt 2):H1727-34.

PMID:
1694410
39.

Membrane proteins of the myocytes in cardiac overload.

Mansier P, Chevalier B, Mayoux E, Charlemagne D, Ollivier L, Callens-el Amrani F, Swynghedauw B.

Br J Clin Pharmacol. 1990;30 Suppl 1:43S-48S.

41.

Identification of two catalytic subunits of Na+/K+ ATPase in rat ventricle.

Charlemagne D, Poyard M, Oliviero P, Mayoux E.

Prog Clin Biol Res. 1988;273:45-50. No abstract available.

PMID:
2843930
42.

Identification of two isoforms of the catalytic subunit of Na,K-ATPase in myocytes from adult rat heart.

Charlemagne D, Mayoux E, Poyard M, Oliviero P, Geering K.

J Biol Chem. 1987 Jul 5;262(19):8941-3.

43.

Can changes in sarcolemmal membranes account for the altered inotropic responsiveness in hypertrophied heart?

Mayoux E, Lelievre L, Charlemagne D.

Biochimie. 1987 Apr;69(4):419-25. Review.

PMID:
2958094

Supplemental Content

Loading ...
Support Center