Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 87

1.

A cellular and bioinformatics analysis of the SENP1 SUMO isopeptidase in pancreatic cancer.

Bouchard DM, Matunis MJ.

J Gastrointest Oncol. 2019 Oct;10(5):821-830. doi: 10.21037/jgo.2019.05.09.

2.

A Method for SUMO Modification of Proteins in vitro.

Lee CC, Li B, Yu H, Matunis MJ.

Bio Protoc. 2018 Oct 5;8(19). pii: e3033. doi: 10.21769/BioProtoc.3033.

3.

The SUMO-specific isopeptidase SENP2 is targeted to intracellular membranes via a predicted N-terminal amphipathic α-helix.

Odeh HM, Coyaud E, Raught B, Matunis MJ.

Mol Biol Cell. 2018 Aug 1;29(15):1878-1890. doi: 10.1091/mbc.E17-07-0445. Epub 2018 Jun 6.

4.

Sumoylation promotes optimal APC/C Activation and Timely Anaphase.

Lee CC, Li B, Yu H, Matunis MJ.

Elife. 2018 Mar 8;7. pii: e29539. doi: 10.7554/eLife.29539.

5.

Global Identification of Small Ubiquitin-related Modifier (SUMO) Substrates Reveals Crosstalk between SUMOylation and Phosphorylation Promotes Cell Migration.

Uzoma I, Hu J, Cox E, Xia S, Zhou J, Rho HS, Guzzo C, Paul C, Ajala O, Goodwin CR, Jeong J, Moore C, Zhang H, Meluh P, Blackshaw S, Matunis M, Qian J, Zhu H.

Mol Cell Proteomics. 2018 May;17(5):871-888. doi: 10.1074/mcp.RA117.000014. Epub 2018 Feb 8.

6.

RAP80, ubiquitin and SUMO in the DNA damage response.

Lombardi PM, Matunis MJ, Wolberger C.

J Mol Med (Berl). 2017 Aug;95(8):799-807. doi: 10.1007/s00109-017-1561-1. Epub 2017 Jul 5. Review.

7.

Global Analysis of SUMO-Binding Proteins Identifies SUMOylation as a Key Regulator of the INO80 Chromatin Remodeling Complex.

Cox E, Hwang W, Uzoma I, Hu J, Guzzo CM, Jeong J, Matunis MJ, Qian J, Zhu H, Blackshaw S.

Mol Cell Proteomics. 2017 May;16(5):812-823. doi: 10.1074/mcp.M116.063719. Epub 2017 Mar 2.

8.

A high throughput mutagenic analysis of yeast sumo structure and function.

Newman HA, Meluh PB, Lu J, Vidal J, Carson C, Lagesse E, Gray JJ, Boeke JD, Matunis MJ.

PLoS Genet. 2017 Feb 6;13(2):e1006612. doi: 10.1371/journal.pgen.1006612. eCollection 2017 Feb.

9.

Resolving Chromatin Bridges With SIMs, SUMOs and PICH.

Lee CC, Matunis MJ.

Cell Cycle. 2016 Oct;15(19):2547-2548. Epub 2016 Jul 27. No abstract available.

10.

Detection of SUMOylation in Plasmodium falciparum.

Reiter KH, Matunis MJ.

Methods Mol Biol. 2016;1475:283-90. doi: 10.1007/978-1-4939-6358-4_19.

PMID:
27631812
11.

Concepts and Methodologies to Study Protein SUMOylation: An Overview.

Matunis MJ, Rodriguez MS.

Methods Mol Biol. 2016;1475:3-22. doi: 10.1007/978-1-4939-6358-4_1. Review.

PMID:
27631794
12.

Characterizing Requirements for Small Ubiquitin-like Modifier (SUMO) Modification and Binding on Base Excision Repair Activity of Thymine-DNA Glycosylase in Vivo.

McLaughlin D, Coey CT, Yang WC, Drohat AC, Matunis MJ.

J Biol Chem. 2016 Apr 22;291(17):9014-24. doi: 10.1074/jbc.M115.706325. Epub 2016 Feb 25.

13.

Characterization and Structural Insights into Selective E1-E2 Interactions in the Human and Plasmodium falciparum SUMO Conjugation Systems.

Reiter KH, Ramachandran A, Xia X, Boucher LE, Bosch J, Matunis MJ.

J Biol Chem. 2016 Feb 19;291(8):3860-70. doi: 10.1074/jbc.M115.680801. Epub 2015 Dec 23.

14.

The C9orf72 repeat expansion disrupts nucleocytoplasmic transport.

Zhang K, Donnelly CJ, Haeusler AR, Grima JC, Machamer JB, Steinwald P, Daley EL, Miller SJ, Cunningham KM, Vidensky S, Gupta S, Thomas MA, Hong I, Chiu SL, Huganir RL, Ostrow LW, Matunis MJ, Wang J, Sattler R, Lloyd TE, Rothstein JD.

Nature. 2015 Sep 3;525(7567):56-61. doi: 10.1038/nature14973. Epub 2015 Aug 26.

15.

Identification of SUMO E3 ligase-specific substrates using the HuProt human proteome microarray.

Cox E, Uzoma I, Guzzo C, Jeong JS, Matunis M, Blackshaw S, Zhu H.

Methods Mol Biol. 2015;1295:455-63. doi: 10.1007/978-1-4939-2550-6_32.

16.

Identification of SUMO-2/3-modified proteins associated with mitotic chromosomes.

Cubeñas-Potts C, Srikumar T, Lee C, Osula O, Subramonian D, Zhang XD, Cotter RJ, Raught B, Matunis MJ.

Proteomics. 2015 Feb;15(4):763-72. doi: 10.1002/pmic.201400400. Epub 2015 Jan 7.

17.

Characterization of the SUMO-binding activity of the myeloproliferative and mental retardation (MYM)-type zinc fingers in ZNF261 and ZNF198.

Guzzo CM, Ringel A, Cox E, Uzoma I, Zhu H, Blackshaw S, Wolberger C, Matunis MJ.

PLoS One. 2014 Aug 18;9(8):e105271. doi: 10.1371/journal.pone.0105271. eCollection 2014.

18.

E2-mediated small ubiquitin-like modifier (SUMO) modification of thymine DNA glycosylase is efficient but not selective for the enzyme-product complex.

Coey CT, Fitzgerald ME, Maiti A, Reiter KH, Guzzo CM, Matunis MJ, Drohat AC.

J Biol Chem. 2014 May 30;289(22):15810-9. doi: 10.1074/jbc.M114.572081. Epub 2014 Apr 21.

19.

A mediator methylation mystery: JMJD1C demethylates MDC1 to regulate DNA repair.

Lu J, Matunis MJ.

Nat Struct Mol Biol. 2013 Dec;20(12):1346-8. doi: 10.1038/nsmb.2729.

20.

SENP1 and SENP2 affect spatial and temporal control of sumoylation in mitosis.

Cubeñas-Potts C, Goeres JD, Matunis MJ.

Mol Biol Cell. 2013 Nov;24(22):3483-95. doi: 10.1091/mbc.E13-05-0230. Epub 2013 Sep 18.

21.

BLM SUMOylation regulates ssDNA accumulation at stalled replication forks.

Ouyang KJ, Yagle MK, Matunis MJ, Ellis NA.

Front Genet. 2013 Sep 4;4:167. doi: 10.3389/fgene.2013.00167. eCollection 2013.

22.

E2 ubiquitin-conjugating enzymes regulate the deubiquitinating activity of OTUB1.

Wiener R, DiBello AT, Lombardi PM, Guzzo CM, Zhang X, Matunis MJ, Wolberger C.

Nat Struct Mol Biol. 2013 Sep;20(9):1033-9. doi: 10.1038/nsmb.2655. Epub 2013 Aug 18.

23.

Identification of biochemically distinct properties of the small ubiquitin-related modifier (SUMO) conjugation pathway in Plasmodium falciparum.

Reiter K, Mukhopadhyay D, Zhang H, Boucher LE, Kumar N, Bosch J, Matunis MJ.

J Biol Chem. 2013 Sep 27;288(39):27724-36. doi: 10.1074/jbc.M113.498410. Epub 2013 Aug 13.

24.

Expanding SUMO and ubiquitin-mediated signaling through hybrid SUMO-ubiquitin chains and their receptors.

Guzzo CM, Matunis MJ.

Cell Cycle. 2013 Apr 1;12(7):1015-7. doi: 10.4161/cc.24332. Epub 2013 Mar 19. No abstract available.

25.

SUMO: a multifaceted modifier of chromatin structure and function.

Cubeñas-Potts C, Matunis MJ.

Dev Cell. 2013 Jan 14;24(1):1-12. doi: 10.1016/j.devcel.2012.11.020. Review.

26.

RNF4-dependent hybrid SUMO-ubiquitin chains are signals for RAP80 and thereby mediate the recruitment of BRCA1 to sites of DNA damage.

Guzzo CM, Berndsen CE, Zhu J, Gupta V, Datta A, Greenberg RA, Wolberger C, Matunis MJ.

Sci Signal. 2012 Dec 4;5(253):ra88. doi: 10.1126/scisignal.2003485.

27.

SUMO, PTEN and Tumor Suppression.

Matunis MJ, Guzzo CM.

Pigment Cell Melanoma Res. 2012 Jul 31. doi: 10.1111/pcmr.12001. [Epub ahead of print]

28.

SUMO binding by the Epstein-Barr virus protein kinase BGLF4 is crucial for BGLF4 function.

Li R, Wang L, Liao G, Guzzo CM, Matunis MJ, Zhu H, Hayward SD.

J Virol. 2012 May;86(10):5412-21. doi: 10.1128/JVI.00314-12. Epub 2012 Mar 7.

29.

The SUMO-specific isopeptidase SENP2 associates dynamically with nuclear pore complexes through interactions with karyopherins and the Nup107-160 nucleoporin subcomplex.

Goeres J, Chan PK, Mukhopadhyay D, Zhang H, Raught B, Matunis MJ.

Mol Biol Cell. 2011 Dec;22(24):4868-82. doi: 10.1091/mbc.E10-12-0953. Epub 2011 Oct 26.

30.

The defective nuclear lamina in Hutchinson-gilford progeria syndrome disrupts the nucleocytoplasmic Ran gradient and inhibits nuclear localization of Ubc9.

Kelley JB, Datta S, Snow CJ, Chatterjee M, Ni L, Spencer A, Yang CS, Cubeñas-Potts C, Matunis MJ, Paschal BM.

Mol Cell Biol. 2011 Aug;31(16):3378-95. doi: 10.1128/MCB.05087-11. Epub 2011 Jun 13.

31.

SUMmOning Daxx-mediated repression.

Mukhopadhyay D, Matunis MJ.

Mol Cell. 2011 Apr 8;42(1):4-5. doi: 10.1016/j.molcel.2011.03.008.

32.

An improved SUMmOn-based methodology for the identification of ubiquitin and ubiquitin-like protein conjugation sites identifies novel ubiquitin-like protein chain linkages.

Jeram SM, Srikumar T, Zhang XD, Anne Eisenhauer H, Rogers R, Pedrioli PG, Matunis M, Raught B.

Proteomics. 2010 Jan;10(2):254-65. doi: 10.1002/pmic.200900648.

33.

SUMO modification regulates BLM and RAD51 interaction at damaged replication forks.

Ouyang KJ, Woo LL, Zhu J, Huo D, Matunis MJ, Ellis NA.

PLoS Biol. 2009 Dec;7(12):e1000252. doi: 10.1371/journal.pbio.1000252. Epub 2009 Dec 1.

34.

Chromosome movement via multiple motors: novel relationships between KIF18A and CENP-E revealed.

Zhang XD, Matunis MJ.

Cell Cycle. 2009 Oct 15;8(20):3257-8. Epub 2009 Oct 15. No abstract available.

PMID:
19823019
35.

Synthesis of free and proliferating cell nuclear antigen-bound polyubiquitin chains by the RING E3 ubiquitin ligase Rad5.

Carlile CM, Pickart CM, Matunis MJ, Cohen RE.

J Biol Chem. 2009 Oct 23;284(43):29326-34. doi: 10.1074/jbc.M109.043885. Epub 2009 Aug 25.

36.

Enhanced SUMOylation of proteins containing a SUMO-interacting motif by SUMO-Ubc9 fusion.

Kim ET, Kim KK, Matunis MJ, Ahn JH.

Biochem Biophys Res Commun. 2009 Oct 9;388(1):41-5. doi: 10.1016/j.bbrc.2009.07.103. Epub 2009 Jul 25.

PMID:
19635459
37.

Protection from isopeptidase-mediated deconjugation regulates paralog-selective sumoylation of RanGAP1.

Zhu S, Goeres J, Sixt KM, Békés M, Zhang XD, Salvesen GS, Matunis MJ.

Mol Cell. 2009 Mar 13;33(5):570-80. doi: 10.1016/j.molcel.2009.02.008.

38.

Characterization of the effects and functions of sumoylation through rapamycin-mediated heterodimerization.

Zhu S, Matunis MJ.

Methods Mol Biol. 2009;497:153-64. doi: 10.1007/978-1-59745-566-4_10. Review.

PMID:
19107416
39.

Small ubiquitin-related modifier (SUMO) binding determines substrate recognition and paralog-selective SUMO modification.

Zhu J, Zhu S, Guzzo CM, Ellis NA, Sung KS, Choi CY, Matunis MJ.

J Biol Chem. 2008 Oct 24;283(43):29405-15. doi: 10.1074/jbc.M803632200. Epub 2008 Aug 15.

40.

Developmental control of sumoylation pathway proteins in mouse male germ cells.

La Salle S, Sun F, Zhang XD, Matunis MJ, Handel MA.

Dev Biol. 2008 Sep 1;321(1):227-37. doi: 10.1016/j.ydbio.2008.06.020. Epub 2008 Jun 21.

41.

SUMO-2/3 modification and binding regulate the association of CENP-E with kinetochores and progression through mitosis.

Zhang XD, Goeres J, Zhang H, Yen TJ, Porter AC, Matunis MJ.

Mol Cell. 2008 Mar 28;29(6):729-41. doi: 10.1016/j.molcel.2008.01.013.

42.

SUMO: the glue that binds.

Matunis MJ, Zhang XD, Ellis NA.

Dev Cell. 2006 Nov;11(5):596-7. Erratum in: Dev Cell. 2006 Dec;11(6):903.

43.
44.

Automated identification of SUMOylation sites using mass spectrometry and SUMmOn pattern recognition software.

Pedrioli PG, Raught B, Zhang XD, Rogers R, Aitchison J, Matunis M, Aebersold R.

Nat Methods. 2006 Jul;3(7):533-9.

PMID:
16791211
45.
46.

Beginning at the end with SUMO.

Matunis MJ, Pickart CM.

Nat Struct Mol Biol. 2005 Jul;12(7):565-6. No abstract available.

PMID:
15999109
47.

Intra-nuclear trafficking of the BLM helicase to DNA damage-induced foci is regulated by SUMO modification.

Eladad S, Ye TZ, Hu P, Leversha M, Beresten S, Matunis MJ, Ellis NA.

Hum Mol Genet. 2005 May 15;14(10):1351-65. Epub 2005 Apr 13.

PMID:
15829507
48.

Ub in charge: regulating E2 enzyme nuclear import.

Zhang XD, Matunis MJ.

Nat Cell Biol. 2005 Jan;7(1):12-4. Review. No abstract available.

PMID:
15632944
49.

SUMO-1 modification of the Wilms' tumor suppressor WT1.

Smolen GA, Vassileva MT, Wells J, Matunis MJ, Haber DA.

Cancer Res. 2004 Nov 1;64(21):7846-51.

50.

SUMO modified proteins localize to the XY body of pachytene spermatocytes.

Rogers RS, Inselman A, Handel MA, Matunis MJ.

Chromosoma. 2004 Nov;113(5):233-43. Epub 2004 Sep 3.

PMID:
15349788

Supplemental Content

Loading ...
Support Center