Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 27

1.

Regulated Proteolysis in Vibrio cholerae Allowing Rapid Adaptation to Stress Conditions.

Pennetzdorfer N, Lembke M, Pressler K, Matson JS, Reidl J, Schild S.

Front Cell Infect Microbiol. 2019 Jun 21;9:214. doi: 10.3389/fcimb.2019.00214. eCollection 2019. Review.

2.

Characterization of the Vibrio cholerae Phage Shock Protein Response.

DeAngelis CM, Nag D, Withey JH, Matson JS.

J Bacteriol. 2019 Jun 21;201(14). pii: e00761-18. doi: 10.1128/JB.00761-18. Print 2019 Jul 15.

PMID:
30858296
3.

A Periplasmic Antimicrobial Peptide-Binding Protein Is Required for Stress Survival in Vibrio cholerae.

Saul-McBeth J, Matson JS.

Front Microbiol. 2019 Feb 5;10:161. doi: 10.3389/fmicb.2019.00161. eCollection 2019.

4.

Genome Sequence of Vibrio cholerae Strain D1, Isolated from the Maumee River in Toledo, Ohio.

Matson JS.

Microbiol Resour Announc. 2018 Oct 25;7(16). pii: e01312-18. doi: 10.1128/MRA.01312-18. eCollection 2018 Oct.

5.

Vibrio responses to extracytoplasmic stress.

DeAngelis CM, Saul-McBeth J, Matson JS.

Environ Microbiol Rep. 2018 Oct;10(5):511-521. doi: 10.1111/1758-2229.12693. Epub 2018 Oct 5. Review.

PMID:
30246498
6.

Infant Mouse Model of Vibrio cholerae Infection and Colonization.

Matson JS.

Methods Mol Biol. 2018;1839:147-152. doi: 10.1007/978-1-4939-8685-9_13.

PMID:
30047061
7.

Random Transposon Mutagenesis of Vibrio cholerae.

Matson JS.

Methods Mol Biol. 2018;1839:39-44. doi: 10.1007/978-1-4939-8685-9_4.

PMID:
30047052
8.

Preparation of Vibrio cholerae Samples for RNA-seq Analysis.

Matson JS.

Methods Mol Biol. 2018;1839:29-38. doi: 10.1007/978-1-4939-8685-9_3.

PMID:
30047051
9.

RAIL: A new tool for defining bacterial promoter regions.

Matson JS.

J Bacteriol. 2018 Mar 12;200(11):e00039-18. doi: 10.1128/JB.00039-18. [Epub ahead of print]

10.

Sterilization of Biofilm on a Titanium Surface Using a Combination of Nonthermal Plasma and Chlorhexidine Digluconate.

Gupta TT, Karki SB, Matson JS, Gehling DJ, Ayan H.

Biomed Res Int. 2017;2017:6085741. doi: 10.1155/2017/6085741. Epub 2017 Sep 19.

11.

Assay development and high-throughput screening for small molecule inhibitors of a Vibrio cholerae stress response pathway.

Stanbery L, Matson JS.

Drug Des Devel Ther. 2017 Sep 19;11:2777-2785. doi: 10.2147/DDDT.S144391. eCollection 2017.

12.

A putative Vibrio cholerae two-component system controls a conserved periplasmic protein in response to the antimicrobial peptide polymyxin B.

Matson JS, Livny J, DiRita VJ.

PLoS One. 2017 Oct 11;12(10):e0186199. doi: 10.1371/journal.pone.0186199. eCollection 2017.

13.

Evolution of a global regulator: Lrp in four orders of γ-Proteobacteria.

Unoarumhi Y, Blumenthal RM, Matson JS.

BMC Evol Biol. 2016 May 20;16(1):111. doi: 10.1186/s12862-016-0685-1.

14.

Regulated intramembrane proteolysis of the virulence activator TcpP in Vibrio cholerae is initiated by the tail-specific protease (Tsp).

Teoh WP, Matson JS, DiRita VJ.

Mol Microbiol. 2015 Sep;97(5):822-31. doi: 10.1111/mmi.13069. Epub 2015 Jul 30.

15.

Single-molecule tracking in live Vibrio cholerae reveals that ToxR recruits the membrane-bound virulence regulator TcpP to the toxT promoter.

Haas BL, Matson JS, DiRita VJ, Biteen JS.

Mol Microbiol. 2015 Apr;96(1):4-13. doi: 10.1111/mmi.12834. Epub 2014 Nov 4.

16.

Genome Sequence of Klebsiella pneumoniae Respiratory Isolate IA565.

Johnson JG, Spurbeck RR, Sandhu SK, Matson JS.

Genome Announc. 2014 Sep 11;2(5). pii: e00896-14. doi: 10.1128/genomeA.00896-14.

17.

Imaging live cells at the nanometer-scale with single-molecule microscopy: obstacles and achievements in experiment optimization for microbiology.

Haas BL, Matson JS, DiRita VJ, Biteen JS.

Molecules. 2014 Aug 13;19(8):12116-49. doi: 10.3390/molecules190812116. Review.

18.

Genome Sequence of Klebsiella pneumoniae Urinary Tract Isolate Top52.

Johnson JG, Spurbeck RR, Sandhu SK, Matson JS.

Genome Announc. 2014 Jul 3;2(4). pii: e00668-14. doi: 10.1128/genomeA.00668-14.

19.

Polymyxin B resistance in El Tor Vibrio cholerae requires lipid acylation catalyzed by MsbB.

Matson JS, Yoo HJ, Hakansson K, Dirita VJ.

J Bacteriol. 2010 Apr;192(8):2044-52. doi: 10.1128/JB.00023-10. Epub 2010 Feb 12.

20.

LcrG secretion is not required for blocking of Yops secretion in Yersinia pestis.

Reina LD, O'Bryant DM, Matson JS, Nilles ML.

BMC Microbiol. 2008 Feb 8;8:29. doi: 10.1186/1471-2180-8-29.

21.

Regulatory networks controlling Vibrio cholerae virulence gene expression.

Matson JS, Withey JH, DiRita VJ.

Infect Immun. 2007 Dec;75(12):5542-9. Epub 2007 Sep 17. Review. No abstract available.

22.

Degradation of the membrane-localized virulence activator TcpP by the YaeL protease in Vibrio cholerae.

Matson JS, DiRita VJ.

Proc Natl Acad Sci U S A. 2005 Nov 8;102(45):16403-8. Epub 2005 Oct 27.

23.

Immunization of mice with YscF provides protection from Yersinia pestis infections.

Matson JS, Durick KA, Bradley DS, Nilles ML.

BMC Microbiol. 2005 Jun 24;5:38.

24.

Genome sequence of Yersinia pestis KIM.

Deng W, Burland V, Plunkett G 3rd, Boutin A, Mayhew GF, Liss P, Perna NT, Rose DJ, Mau B, Zhou S, Schwartz DC, Fetherston JD, Lindler LE, Brubaker RR, Plano GV, Straley SC, McDonough KA, Nilles ML, Matson JS, Blattner FR, Perry RD.

J Bacteriol. 2002 Aug;184(16):4601-11.

25.

Interaction of the Yersinia pestis type III regulatory proteins LcrG and LcrV occurs at a hydrophobic interface.

Matson JS, Nilles ML.

BMC Microbiol. 2002 Jun 28;2:16. Erratum in: BMC Microbiol. 2002 Sep 5;2(1):25..

26.
27.

Ileal Stasis and Ulcer of the Stomach.

Matson JS.

Ind Med Gaz. 1919 Jun;54(6):235. No abstract available.

Supplemental Content

Loading ...
Support Center