Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 50

1.

Evaluation of yeasts from Ecuadorian chicha by their performance as starters for alcoholic fermentations in the food industry.

Grijalva-Vallejos N, Aranda A, Matallana E.

Int J Food Microbiol. 2019 Nov 26;317:108462. doi: 10.1016/j.ijfoodmicro.2019.108462. [Epub ahead of print]

PMID:
31794930
2.

Saccharomyces cerevisiae Cytosolic Thioredoxins Control Glycolysis, Lipid Metabolism, and Protein Biosynthesis under Wine-Making Conditions.

Picazo C, McDonagh B, Peinado J, Bárcena JA, Matallana E, Aranda A.

Appl Environ Microbiol. 2019 Mar 22;85(7). pii: e02953-18. doi: 10.1128/AEM.02953-18. Print 2019 Apr 1.

3.

Yeast thioredoxin reductase Trr1p controls TORC1-regulated processes.

Picazo C, Matallana E, Aranda A.

Sci Rep. 2018 Nov 7;8(1):16500. doi: 10.1038/s41598-018-34908-4.

4.

Non-canonical regulation of glutathione and trehalose biosynthesis characterizes non-Saccharomyces wine yeasts with poor performance in active dry yeast production.

Gamero-Sandemetrio E, Payá-Tormo L, Gómez-Pastor R, Aranda A, Matallana E.

Microb Cell. 2018 Jan 26;5(4):184-197. doi: 10.15698/mic2018.04.624.

5.

Herbicide glufosinate inhibits yeast growth and extends longevity during wine fermentation.

Vallejo B, Picazo C, Orozco H, Matallana E, Aranda A.

Sci Rep. 2017 Sep 29;7(1):12414. doi: 10.1038/s41598-017-12794-6.

6.

Zymography Methods to Simultaneously Analyze Superoxide Dismutase and Catalase Activities: Novel Application for Yeast Species Identification.

Gamero-Sandemetrio E, Gómez-Pastor R, Matallana E.

Methods Mol Biol. 2017;1626:189-198. doi: 10.1007/978-1-4939-7111-4_17.

PMID:
28608211
7.

Sch9p kinase and the Gcn4p transcription factor regulate glycerol production during winemaking.

Vallejo B, Orozco H, Picazo C, Matallana E, Aranda A.

FEMS Yeast Res. 2017 Jan 1;17(1). doi: 10.1093/femsyr/fow106.

PMID:
27956494
8.

Biotechnological impact of stress response on wine yeast.

Matallana E, Aranda A.

Lett Appl Microbiol. 2017 Feb;64(2):103-110. doi: 10.1111/lam.12677. Epub 2016 Nov 21. Review.

PMID:
27714822
9.

RNA binding protein Pub1p regulates glycerol production and stress tolerance by controlling Gpd1p activity during winemaking.

Orozco H, Sepúlveda A, Picazo C, Matallana E, Aranda A.

Appl Microbiol Biotechnol. 2016 Jun;100(11):5017-27. doi: 10.1007/s00253-016-7340-z. Epub 2016 Feb 4.

PMID:
26846624
10.

Food-grade argan oil supplementation in molasses enhances fermentative performance and antioxidant defenses of active dry wine yeast.

Gamero-Sandemetrio E, Torrellas M, Rábena MT, Gómez-Pastor R, Aranda A, Matallana E.

AMB Express. 2015 Dec;5(1):75. doi: 10.1186/s13568-015-0159-7. Epub 2015 Dec 1.

11.

Interplay among Gcn5, Sch9 and mitochondria during chronological aging of wine yeast is dependent on growth conditions.

Picazo C, Orozco H, Matallana E, Aranda A.

PLoS One. 2015 Feb 6;10(2):e0117267. doi: 10.1371/journal.pone.0117267. eCollection 2015.

12.

Mitochondria inheritance is a key factor for tolerance to dehydration in wine yeast production.

Picazo C, Gamero-Sandemetrio E, Orozco H, Albertin W, Marullo P, Matallana E, Aranda A.

Lett Appl Microbiol. 2015 Mar;60(3):217-22. doi: 10.1111/lam.12369. Epub 2014 Dec 22.

13.

Enhanced fermentative capacity of yeasts engineered in storage carbohydrate metabolism.

Pérez-Torrado R, Matallana E.

Biotechnol Prog. 2015 Jan-Feb;31(1):20-4. doi: 10.1002/btpr.1993. Epub 2014 Sep 23.

PMID:
25219977
14.

Acetyltransferase SAS2 and sirtuin SIR2, respectively, control flocculation and biofilm formation in wine yeast.

Rodriguez ME, Orozco H, Cantoral JM, Matallana E, Aranda A.

FEMS Yeast Res. 2014 Sep;14(6):845-57. doi: 10.1111/1567-1364.12173. Epub 2014 Jun 26.

15.

Antioxidant defense parameters as predictive biomarkers for fermentative capacity of active dried wine yeast.

Gamero-Sandemetrio E, Gómez-Pastor R, Matallana E.

Biotechnol J. 2014 Aug;9(8):1055-64. doi: 10.1002/biot.201300448. Epub 2014 May 27.

PMID:
24644263
16.

Trx2p-dependent regulation of Saccharomyces cerevisiae oxidative stress response by the Skn7p transcription factor under respiring conditions.

Gómez-Pastor R, Garre E, Pérez-Torrado R, Matallana E.

PLoS One. 2013 Dec 23;8(12):e85404. doi: 10.1371/journal.pone.0085404. eCollection 2013.

17.

Antioxidant compound supplementation prevents oxidative damage in a Drosophila model of Parkinson's disease.

Casani S, Gómez-Pastor R, Matallana E, Paricio N.

Free Radic Biol Med. 2013 Aug;61:151-60. doi: 10.1016/j.freeradbiomed.2013.03.021. Epub 2013 Mar 31.

PMID:
23548634
18.

Zymogram profiling of superoxide dismutase and catalase activities allows Saccharomyces and non-Saccharomyces species differentiation and correlates to their fermentation performance.

Gamero-Sandemetrio E, Gómez-Pastor R, Matallana E.

Appl Microbiol Biotechnol. 2013 May;97(10):4563-76. doi: 10.1007/s00253-012-4672-1. Epub 2013 Jan 25.

PMID:
23354444
19.

Genetic manipulation of longevity-related genes as a tool to regulate yeast life span and metabolite production during winemaking.

Orozco H, Matallana E, Aranda A.

Microb Cell Fact. 2013 Jan 2;12:1. doi: 10.1186/1475-2859-12-1.

20.

Two-carbon metabolites, polyphenols and vitamins influence yeast chronological life span in winemaking conditions.

Orozco H, Matallana E, Aranda A.

Microb Cell Fact. 2012 Aug 8;11:104. doi: 10.1186/1475-2859-11-104.

21.

Wine yeast sirtuins and Gcn5p control aging and metabolism in a natural growth medium.

Orozco H, Matallana E, Aranda A.

Mech Ageing Dev. 2012 May;133(5):348-58. doi: 10.1016/j.mad.2012.03.013. Epub 2012 Apr 2.

PMID:
22738658
22.

Oxidative stress tolerance, adenylate cyclase, and autophagy are key players in the chronological life span of Saccharomyces cerevisiae during winemaking.

Orozco H, Matallana E, Aranda A.

Appl Environ Microbiol. 2012 Apr;78(8):2748-57. doi: 10.1128/AEM.07261-11. Epub 2012 Feb 10.

23.

Engineered Trx2p industrial yeast strain protects glycolysis and fermentation proteins from oxidative carbonylation during biomass propagation.

Gómez-Pastor R, Pérez-Torrado R, Cabiscol E, Ros J, Matallana E.

Microb Cell Fact. 2012 Jan 9;11:4. doi: 10.1186/1475-2859-11-4.

24.

Modification of the TRX2 gene dose in Saccharomyces cerevisiae affects hexokinase 2 gene regulation during wine yeast biomass production.

Gómez-Pastor R, Pérez-Torrado R, Matallana E.

Appl Microbiol Biotechnol. 2012 May;94(3):773-87. doi: 10.1007/s00253-011-3738-9. Epub 2012 Jan 6.

PMID:
22223102
25.

Improving yield of industrial biomass propagation by increasing the Trx2p dosage.

Gómez-Pastor R, Pérez-Torrado R, Matallana E.

Bioeng Bugs. 2010 Sep-Oct;1(5):352-3. doi: 10.4161/bbug.1.5.12384.

26.

Transcriptomic and proteomic insights of the wine yeast biomass propagation process.

Gómez-Pastor R, Pérez-Torrado R, Cabiscol E, Matallana E.

FEMS Yeast Res. 2010 Nov;10(7):870-84. doi: 10.1111/j.1567-1364.2010.00667.x. Epub 2010 Aug 25.

27.

Effects of pharmacological agents on the lifespan phenotype of Drosophila DJ-1beta mutants.

Lavara-Culebras E, Muñoz-Soriano V, Gómez-Pastor R, Matallana E, Paricio N.

Gene. 2010 Aug 15;462(1-2):26-33. doi: 10.1016/j.gene.2010.04.009. Epub 2010 Apr 24.

PMID:
20423725
28.

Reduction of oxidative cellular damage by overexpression of the thioredoxin TRX2 gene improves yield and quality of wine yeast dry active biomass.

Gómez-Pastor R, Pérez-Torrado R, Cabiscol E, Ros J, Matallana E.

Microb Cell Fact. 2010 Feb 12;9:9. doi: 10.1186/1475-2859-9-9. Erratum in: Microb Cell Fact. 2012;11:31.

29.

Oxidative stress responses and lipid peroxidation damage are induced during dehydration in the production of dry active wine yeasts.

Garre E, Raginel F, Palacios A, Julien A, Matallana E.

Int J Food Microbiol. 2010 Jan 1;136(3):295-303. doi: 10.1016/j.ijfoodmicro.2009.10.018. Epub 2009 Oct 28.

PMID:
19914726
30.
31.

Acid trehalase is involved in intracellular trehalose mobilization during postdiauxic growth and severe saline stress in Saccharomyces cerevisiae.

Garre E, Pérez-Torrado R, Gimeno-Alcañiz JV, Matallana E.

FEMS Yeast Res. 2009 Feb;9(1):52-62. doi: 10.1111/j.1567-1364.2008.00453.x. Epub 2008 Nov 5.

32.

Fermentative capacity of dry active wine yeast requires a specific oxidative stress response during industrial biomass growth.

Pérez-Torrado R, Gómez-Pastor R, Larsson C, Matallana E.

Appl Microbiol Biotechnol. 2009 Jan;81(5):951-60. doi: 10.1007/s00253-008-1722-9. Epub 2008 Oct 3.

PMID:
18836715
33.

Btn2p is involved in ethanol tolerance and biofilm formation in flor yeast.

Espinazo-Romeu M, Cantoral JM, Matallana E, Aranda A.

FEMS Yeast Res. 2008 Nov;8(7):1127-36. doi: 10.1111/j.1567-1364.2008.00397.x. Epub 2008 Jun 12.

34.

Sulfur and adenine metabolisms are linked, and both modulate sulfite resistance in wine yeast.

Aranda A, Jiménez-Martí E, Orozco H, Matallana E, Del Olmo M.

J Agric Food Chem. 2006 Aug 9;54(16):5839-46.

PMID:
16881685
35.

Monitoring stress-related genes during the process of biomass propagation of Saccharomyces cerevisiae strains used for wine making.

Pérez-Torrado R, Bruno-Bárcena JM, Matallana E.

Appl Environ Microbiol. 2005 Nov;71(11):6831-7.

36.

Wine yeast strains engineered for glycogen overproduction display enhanced viability under glucose deprivation conditions.

Pérez-Torrado R, Gimeno-Alcañiz JV, Matallana E.

Appl Environ Microbiol. 2002 Jul;68(7):3339-44.

37.

Study of the first hours of microvinification by the use of osmotic stress-response genes as probes.

Pérez-Torrado R, Carrasco P, Aranda A, Gimeno-Alcañiz J, Pérez-Ortín JE, Matallana E, del Olmo ML.

Syst Appl Microbiol. 2002 Apr;25(1):153-61.

PMID:
12086182
38.

Response to oxidative stress caused by H(2)O(2) in Saccharomyces cerevisiae mutants deficient in trehalase genes.

Pedreño Y, Gimeno-Alcañiz JV, Matallana E, Argüelles JC.

Arch Microbiol. 2002 Jun;177(6):494-9. Epub 2002 Apr 4.

PMID:
12029395
39.
40.

Transcriptional and structural study of a region of two convergent overlapping yeast genes.

Puig S, Pérez-Ortín JE, Matallana E.

Curr Microbiol. 1999 Dec;39(6):369-0373.

PMID:
10525844
41.

Stochastic nucleosome positioning in a yeast chromatin region is not dependent on histone H1.

Puig S, Matallana E, Pérez-Ortín JE.

Curr Microbiol. 1999 Sep;39(3):168-72.

PMID:
10441732
42.

Chromatin structure of the yeast SUC2 promoter in regulatory mutants.

Matallana E, Franco L, Pérez-Ortín JE.

Mol Gen Genet. 1992 Feb;231(3):395-400.

PMID:
1538695
43.

Genome mapping with anchored clones: theoretical aspects.

Ewens WJ, Bell CJ, Donnelly PJ, Dunn P, Matallana E, Ecker JR.

Genomics. 1991 Dec;11(4):799-805.

PMID:
1686019
44.

A new glucose-repressible gene identified from the analysis of chromatin structure in deletion mutants of yeast SUC2 locus.

Igual JC, Matallaná E, Gonzalez-Bosch C, Franco L, Pérez-Ortin JE.

Yeast. 1991 May-Jun;7(4):379-89.

PMID:
1872029
45.

Chromatin structure of transposon Tn903 cloned into a yeast plasmid.

Estruch F, Pérez-Ortín JE, Matallana E, Rodríguez JL, Franco L.

Plasmid. 1989 Sep;22(2):143-50.

PMID:
2560218
46.

Chromatin structure of yeast genes.

Pérez-Ortin JE, Matallana E, Franco L.

Yeast. 1989 Jul-Aug;5(4):219-38. Review. No abstract available.

PMID:
2675487
47.

In vivo assembly of chromatin on pBR322 sequences cloned into yeast plasmids.

Estruch F, Pérez-Ortín JE, Matallana E, Franco L.

Plasmid. 1989 Mar;21(2):113-9.

PMID:
2544910
48.
49.

DNase I sensitivity of the chromatin of the yeast SUC2 gene for invertase.

Pérez-Ortin JE, Estruch F, Matallana E, Franco L.

Mol Gen Genet. 1986 Dec;205(3):422-7.

PMID:
3550382
50.

Sliding-end-labelling. A method to avoid artifacts in nucleosome positioning.

Pérez-Ortín JE, Estruch F, Matallana E, Franco L.

FEBS Lett. 1986 Nov 10;208(1):31-3.

Supplemental Content

Loading ...
Support Center