Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 34

1.

Use of a whole genome approach to identify vaccine molecules affording protection against Streptococcus pneumoniae infection.

Wizemann TM, Heinrichs JH, Adamou JE, Erwin AL, Kunsch C, Choi GH, Barash SC, Rosen CA, Masure HR, Tuomanen E, Gayle A, Brewah YA, Walsh W, Barren P, Lathigra R, Hanson M, Langermann S, Johnson S, Koenig S.

Infect Immun. 2001 Mar;69(3):1593-8.

2.

Role of novel choline binding proteins in virulence of Streptococcus pneumoniae.

Gosink KK, Mann ER, Guglielmo C, Tuomanen EI, Masure HR.

Infect Immun. 2000 Oct;68(10):5690-5.

3.

A competence regulon in Streptococcus pneumoniae revealed by genomic analysis.

Campbell EA, Choi SY, Masure HR.

Mol Microbiol. 1998 Mar;27(5):929-39.

4.

Membrane targeting of RecA during genetic transformation.

Masure HR, Pearce BJ, Shio H, Spellerberg B.

Mol Microbiol. 1998 Feb;27(4):845-52.

5.

Contribution of novel choline-binding proteins to adherence, colonization and immunogenicity of Streptococcus pneumoniae.

Rosenow C, Ryan P, Weiser JN, Johnson S, Fontan P, Ortqvist A, Masure HR.

Mol Microbiol. 1997 Sep;25(5):819-29.

6.

The com locus controls genetic transformation in Streptococcus pneumoniae.

Cheng Q, Campbell EA, Naughton AM, Johnson S, Masure HR.

Mol Microbiol. 1997 Feb;23(4):683-92.

7.

Molecular and cellular biology of pneumococcal infection.

Tuomanen EI, Masure HR.

Microb Drug Resist. 1997 Winter;3(4):297-308. Review. No abstract available.

PMID:
9442482
8.

Peptide methionine sulfoxide reductase contributes to the maintenance of adhesins in three major pathogens.

Wizemann TM, Moskovitz J, Pearce BJ, Cundell D, Arvidson CG, So M, Weissbach H, Brot N, Masure HR.

Proc Natl Acad Sci U S A. 1996 Jul 23;93(15):7985-90.

9.

Pyruvate oxidase, as a determinant of virulence in Streptococcus pneumoniae.

Spellerberg B, Cundell DR, Sandros J, Pearce BJ, Idanpaan-Heikkila I, Rosenow C, Masure HR.

Mol Microbiol. 1996 Feb;19(4):803-13.

PMID:
8820650
10.

The molecular basis of pneumococcal infection: a hypothesis.

Cundell D, Masure HR, Tuomanen EI.

Clin Infect Dis. 1995 Dec;21 Suppl 3:S204-11. Review.

PMID:
8749668
11.

Peptide permeases from Streptococcus pneumoniae affect adherence to eucaryotic cells.

Cundell DR, Pearce BJ, Sandros J, Naughton AM, Masure HR.

Infect Immun. 1995 Jul;63(7):2493-8.

12.

Pathogenesis of pneumococcal infection.

Tuomanen EI, Austrian R, Masure HR.

N Engl J Med. 1995 May 11;332(19):1280-4. Review. No abstract available.

PMID:
7708073
13.

A new genetic strategy for the analysis of virulence and transformation in Streptococcus pneumoniae.

Masure HR, Campbell EA, Cundell DR, Pearce BJ, Sandros J, Spellerberg B.

Dev Biol Stand. 1995;85:251-60. No abstract available.

PMID:
8586185
14.

The rec locus, a competence-induced operon in Streptococcus pneumoniae.

Pearce BJ, Naughton AM, Campbell EA, Masure HR.

J Bacteriol. 1995 Jan;177(1):86-93.

15.

Phase variation in pneumococcal opacity: relationship between colonial morphology and nasopharyngeal colonization.

Weiser JN, Austrian R, Sreenivasan PK, Masure HR.

Infect Immun. 1994 Jun;62(6):2582-9.

16.

Peptide permeases modulate transformation in Streptococcus pneumoniae.

Pearce BJ, Naughton AM, Masure HR.

Mol Microbiol. 1994 Jun;12(6):881-92.

PMID:
7523829
17.

Genetic identification of exported proteins in Streptococcus pneumoniae.

Pearce BJ, Yin YB, Masure HR.

Mol Microbiol. 1993 Sep;9(5):1037-50.

PMID:
7934910
18.

Identification of a carbohydrate recognition domain in filamentous hemagglutinin from Bordetella pertussis.

Prasad SM, Yin Y, Rodzinski E, Tuomanen EI, Masure HR.

Infect Immun. 1993 Jul;61(7):2780-5.

19.
20.
21.

Pertussis toxin has eukaryotic-like carbohydrate recognition domains.

Saukkonen K, Burnette WN, Mar VL, Masure HR, Tuomanen EI.

Proc Natl Acad Sci U S A. 1992 Jan 1;89(1):118-22.

22.
23.

Secretion of the Bordetella pertussis adenylate cyclase from Escherichia coli containing the hemolysin operon.

Masure HR, Au DC, Gross MK, Donovan MG, Storm DR.

Biochemistry. 1990 Jan 9;29(1):140-5.

PMID:
2182114
24.
26.
27.

The interaction of Ca2+ with the calmodulin-sensitive adenylate cyclase from Bordetella pertussis.

Masure HR, Oldenburg DJ, Donovan MG, Shattuck RL, Storm DR.

J Biol Chem. 1988 May 15;263(14):6933-40.

28.

Amino acid sequence of P-57, a neurospecific calmodulin-binding protein.

Wakim BT, Alexander KA, Masure HR, Cimler BM, Storm DR, Walsh KA.

Biochemistry. 1987 Nov 17;26(23):7466-70.

PMID:
2962637
29.

Mechanisms of bacterial pathogenicity that involve production of calmodulin-sensitive adenylate cyclases.

Masure HR, Shattuck RL, Storm DR.

Microbiol Rev. 1987 Mar;51(1):60-5. Review. No abstract available.

30.

Physicochemical and hydrodynamic characterization of P-57, a neurospecific calmodulin binding protein.

Masure HR, Alexander KA, Wakim BT, Storm DR.

Biochemistry. 1986 Nov 18;25(23):7553-60.

PMID:
2948561
31.

Studies on the alpha-subunit of bovine brain S-100 protein.

Masure HR, Head JF, Tice HM.

Biochem J. 1984 Mar 15;218(3):691-6.

32.

Specific localization of scallop gill epithelial calmodulin in cilia.

Stommel EW, Stephens RE, Masure HR, Head JF.

J Cell Biol. 1982 Mar;92(3):622-8.

33.

Identification and purification of a phenothiazine binding fragment from bovine brain calmodulin.

Head JF, Masure HR, Kaminer B.

FEBS Lett. 1982 Jan 11;137(1):71-4. No abstract available.

34.

Characterization of a small molecular size urinary immunoreactive human chorionic gonadotropin (hCG)-like substance produced by normal placenta and by hCG-secreting neoplasms.

Masure HR, Jaffee WL, Sickel MA, Birken S, Canfield RE, Vaitukaitis JL.

J Clin Endocrinol Metab. 1981 Nov;53(5):1014-20.

PMID:
6270179

Supplemental Content

Loading ...
Support Center