Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 69

1.

Cultivation and functional characterization of 79 planctomycetes uncovers their unique biology.

Wiegand S, Jogler M, Boedeker C, Pinto D, Vollmers J, Rivas-Marín E, Kohn T, Peeters SH, Heuer A, Rast P, Oberbeckmann S, Bunk B, Jeske O, Meyerdierks A, Storesund JE, Kallscheuer N, Lücker S, Lage OM, Pohl T, Merkel BJ, Hornburger P, Müller RW, Brümmer F, Labrenz M, Spormann AM, Op den Camp HJM, Overmann J, Amann R, Jetten MSM, Mascher T, Medema MH, Devos DP, Kaster AK, Øvreås L, Rohde M, Galperin MY, Jogler C.

Nat Microbiol. 2019 Nov 18. doi: 10.1038/s41564-019-0588-1. [Epub ahead of print]

PMID:
31740763
2.

The Bacillus subtilis endospore crust: protein interaction network, architecture and glycosylation state of a potential glycoprotein layer.

Bartels J, Blüher A, López Castellanos S, Richter M, Günther M, Mascher T.

Mol Microbiol. 2019 Nov;112(5):1576-1592. doi: 10.1111/mmi.14381. Epub 2019 Sep 19.

PMID:
31502725
3.

ECF σ factors with regulatory extensions: the one-component systems of the σ universe.

Pinto D, Liu Q, Mascher T.

Mol Microbiol. 2019 Aug;112(2):399-409. doi: 10.1111/mmi.14323. Epub 2019 Jun 26. Review.

PMID:
31175685
4.

Coordinated Cell Death in Isogenic Bacterial Populations: Sacrificing Some for the Benefit of Many?

Popp PF, Mascher T.

J Mol Biol. 2019 Apr 25. pii: S0022-2836(19)30231-1. doi: 10.1016/j.jmb.2019.04.024. [Epub ahead of print] Review.

PMID:
31029705
5.

The role of C-terminal extensions in controlling ECF σ factor activity in the widely conserved groups ECF41 and ECF42.

Wu H, Liu Q, Casas-Pastor D, Dürr F, Mascher T, Fritz G.

Mol Microbiol. 2019 Aug;112(2):498-514. doi: 10.1111/mmi.14261. Epub 2019 Jun 11.

PMID:
30990934
6.

Defining the regulon of genes controlled by σE , a key regulator of the cell envelope stress response in Streptomyces coelicolor.

Tran NT, Huang X, Hong HJ, Bush MJ, Chandra G, Pinto D, Bibb MJ, Hutchings MI, Mascher T, Buttner MJ.

Mol Microbiol. 2019 Aug;112(2):461-481. doi: 10.1111/mmi.14250. Epub 2019 Apr 29.

7.

Extracytoplasmic Function σ Factors Can Be Implemented as Robust Heterologous Genetic Switches in Bacillus subtilis.

Pinto D, Dürr F, Froriep F, Araújo D, Liu Q, Mascher T.

iScience. 2019 Mar 29;13:380-390. doi: 10.1016/j.isci.2019.03.001. Epub 2019 Mar 5.

8.

Promoter RNA sequencing (PRSeq) for the massive and quantitative promoter analysis in vitro.

Ohuchi S, Mascher T, Suess B.

Sci Rep. 2019 Feb 28;9(1):3118. doi: 10.1038/s41598-019-39892-x.

9.

Characterization of the Widely Distributed Novel ECF42 Group of Extracytoplasmic Function σ Factors in Streptomyces venezuelae.

Liu Q, Pinto D, Mascher T.

J Bacteriol. 2018 Oct 10;200(21). pii: e00437-18. doi: 10.1128/JB.00437-18. Print 2018 Nov 1.

10.

Engineering orthogonal synthetic timer circuits based on extracytoplasmic function σ factors.

Pinto D, Vecchione S, Wu H, Mauri M, Mascher T, Fritz G.

Nucleic Acids Res. 2018 Aug 21;46(14):7450-7464. doi: 10.1093/nar/gky614.

11.

Publisher Correction: Bacillus SEVA siblings: A Golden Gate-based toolbox to create personalized integrative vectors for Bacillus subtilis.

Radeck J, Meyer D, Lautenschläger N, Mascher T.

Sci Rep. 2018 Mar 6;8(1):4297. doi: 10.1038/s41598-018-22369-8.

12.

Publisher Correction: Bacillus SEVA siblings: A Golden Gate-based toolbox to create personalized integrative vectors for Bacillus subtilis.

Radeck J, Meyer D, Lautenschläger N, Mascher T.

Sci Rep. 2018 Jan 17;8(1):1306. doi: 10.1038/s41598-017-18381-z.

13.

Sporobeads: The Utilization of the Bacillus subtilis Endospore Crust as a Protein Display Platform.

Bartels J, López Castellanos S, Radeck J, Mascher T.

ACS Synth Biol. 2018 Feb 16;7(2):452-461. doi: 10.1021/acssynbio.7b00285. Epub 2018 Jan 19.

PMID:
29284082
14.

The Essential UPP Phosphatase Pair BcrC and UppP Connects Cell Wall Homeostasis during Growth and Sporulation with Cell Envelope Stress Response in Bacillus subtilis.

Radeck J, Lautenschläger N, Mascher T.

Front Microbiol. 2017 Dec 5;8:2403. doi: 10.3389/fmicb.2017.02403. eCollection 2017.

15.

The Bacillus BioBrick Box 2.0: expanding the genetic toolbox for the standardized work with Bacillus subtilis.

Popp PF, Dotzler M, Radeck J, Bartels J, Mascher T.

Sci Rep. 2017 Nov 8;7(1):15058. doi: 10.1038/s41598-017-15107-z.

16.

Bacillus SEVA siblings: A Golden Gate-based toolbox to create personalized integrative vectors for Bacillus subtilis.

Radeck J, Meyer D, Lautenschläger N, Mascher T.

Sci Rep. 2017 Oct 26;7(1):14134. doi: 10.1038/s41598-017-14329-5. Erratum in: Sci Rep. 2018 Jan 17;8(1):1306. Sci Rep. 2018 Mar 6;8(1):4297.

17.

The three-component system EsrISR regulates a cell envelope stress response in Corynebacterium glutamicum.

Kleine B, Chattopadhyay A, Polen T, Pinto D, Mascher T, Bott M, Brocker M, Freudl R.

Mol Microbiol. 2017 Dec;106(5):719-741. doi: 10.1111/mmi.13839. Epub 2017 Oct 12.

18.

Regulatory Characteristics of Bacillus pumilus Protease Promoters.

Toymentseva AA, Mascher T, Sharipova MR.

Curr Microbiol. 2017 May;74(5):550-559. doi: 10.1007/s00284-017-1212-3. Epub 2017 Mar 3.

PMID:
28258295
19.

Insulation and wiring specificity of BceR-like response regulators and their target promoters in Bacillus subtilis.

Fang C, Nagy-Staroń A, Grafe M, Heermann R, Jung K, Gebhard S, Mascher T.

Mol Microbiol. 2017 Apr;104(1):16-31. doi: 10.1111/mmi.13597. Epub 2017 Jan 27.

20.

Application of a Bacillus subtilis Whole-Cell Biosensor (PliaI-lux) for the Identification of Cell Wall Active Antibacterial Compounds.

Kobras CM, Mascher T, Gebhard S.

Methods Mol Biol. 2017;1520:121-131. doi: 10.1007/978-1-4939-6634-9_7.

PMID:
27873249
21.

The cell envelope stress response of Bacillus subtilis: from static signaling devices to dynamic regulatory network.

Radeck J, Fritz G, Mascher T.

Curr Genet. 2017 Feb;63(1):79-90. doi: 10.1007/s00294-016-0624-0. Epub 2016 Jun 25. Review.

PMID:
27344142
22.

The applied side of antimicrobial peptide-inducible promoters from Firmicutes bacteria: expression systems and whole-cell biosensors.

Wolf D, Mascher T.

Appl Microbiol Biotechnol. 2016 Jun;100(11):4817-29. doi: 10.1007/s00253-016-7519-3. Epub 2016 Apr 22. Review.

PMID:
27102123
23.

Substitution of the native srfA promoter by constitutive Pveg in two B. subtilis strains and evaluation of the effect on Surfactin production.

Willenbacher J, Mohr T, Henkel M, Gebhard S, Mascher T, Syldatk C, Hausmann R.

J Biotechnol. 2016 Apr 20;224:14-7. doi: 10.1016/j.jbiotec.2016.03.002. Epub 2016 Mar 4.

PMID:
26953743
24.

(Actino)Bacterial "intelligence": using comparative genomics to unravel the information processing capacities of microbes.

Pinto D, Mascher T.

Curr Genet. 2016 Aug;62(3):487-98. doi: 10.1007/s00294-016-0569-3. Epub 2016 Feb 6. Review.

PMID:
26852121
25.

Anatomy of the bacitracin resistance network in Bacillus subtilis.

Radeck J, Gebhard S, Orchard PS, Kirchner M, Bauer S, Mascher T, Fritz G.

Mol Microbiol. 2016 May;100(4):607-20. doi: 10.1111/mmi.13336. Epub 2016 Mar 10.

26.

A dynamin-like protein involved in bacterial cell membrane surveillance under environmental stress.

Sawant P, Eissenberger K, Karier L, Mascher T, Bramkamp M.

Environ Microbiol. 2016 Sep;18(8):2705-20. doi: 10.1111/1462-2920.13110. Epub 2015 Dec 21.

PMID:
26530236
27.

Cannibalism stress response in Bacillus subtilis.

Höfler C, Heckmann J, Fritsch A, Popp P, Gebhard S, Fritz G, Mascher T.

Microbiology. 2016 Jan;162(1):164-176. doi: 10.1099/mic.0.000176. Epub 2015 Sep 11.

PMID:
26364265
28.

A New Way of Sensing: Need-Based Activation of Antibiotic Resistance by a Flux-Sensing Mechanism.

Fritz G, Dintner S, Treichel NS, Radeck J, Gerland U, Mascher T, Gebhard S.

MBio. 2015 Jul 21;6(4):e00975. doi: 10.1128/mBio.00975-15.

29.

Environmental Sensing in Actinobacteria: a Comprehensive Survey on the Signaling Capacity of This Phylum.

Huang X, Pinto D, Fritz G, Mascher T.

J Bacteriol. 2015 Aug 1;197(15):2517-35. doi: 10.1128/JB.00176-15. Epub 2015 May 18.

30.

A balancing act times two: sensing and regulating cell envelope homeostasis in Bacillus subtilis.

Fritz G, Mascher T.

Mol Microbiol. 2014 Dec;94(6):1201-7. doi: 10.1111/mmi.12848. Epub 2014 Nov 20.

31.

Bacterial (intramembrane-sensing) histidine kinases: signal transfer rather than stimulus perception.

Mascher T.

Trends Microbiol. 2014 Oct;22(10):559-65. doi: 10.1016/j.tim.2014.05.006. Epub 2014 Jun 16.

PMID:
24947190
32.

Bacillus subtilis as a platform for molecular characterisation of regulatory mechanisms of Enterococcus faecalis resistance against cell wall antibiotics.

Fang C, Stiegeler E, Cook GM, Mascher T, Gebhard S.

PLoS One. 2014 Mar 27;9(3):e93169. doi: 10.1371/journal.pone.0093169. eCollection 2014.

33.

Subcellular localization, interactions and dynamics of the phage-shock protein-like Lia response in Bacillus subtilis.

Domínguez-Escobar J, Wolf D, Fritz G, Höfler C, Wedlich-Söldner R, Mascher T.

Mol Microbiol. 2014 May;92(4):716-32. doi: 10.1111/mmi.12586. Epub 2014 Apr 15.

34.

Defence against antimicrobial peptides: different strategies in Firmicutes.

Revilla-Guarinos A, Gebhard S, Mascher T, Zúñiga M.

Environ Microbiol. 2014 May;16(5):1225-37. doi: 10.1111/1462-2920.12400. Epub 2014 Feb 18. Review.

PMID:
24548478
35.

The Bacillus BioBrick Box: generation and evaluation of essential genetic building blocks for standardized work with Bacillus subtilis.

Radeck J, Kraft K, Bartels J, Cikovic T, Dürr F, Emenegger J, Kelterborn S, Sauer C, Fritz G, Gebhard S, Mascher T.

J Biol Eng. 2013 Dec 2;7(1):29. doi: 10.1186/1754-1611-7-29.

36.

Signaling diversity and evolution of extracytoplasmic function (ECF) σ factors.

Mascher T.

Curr Opin Microbiol. 2013 Apr;16(2):148-55. doi: 10.1016/j.mib.2013.02.001. Review.

PMID:
23466210
37.

Characterization of a regulatory network of peptide antibiotic detoxification modules in Lactobacillus casei BL23.

Revilla-Guarinos A, Gebhard S, Alcántara C, Staron A, Mascher T, Zúñiga M.

Appl Environ Microbiol. 2013 May;79(10):3160-70. doi: 10.1128/AEM.00178-13. Epub 2013 Mar 1.

38.

Immediate and heterogeneous response of the LiaFSR two-component system of Bacillus subtilis to the peptide antibiotic bacitracin.

Kesel S, Mader A, Höfler C, Mascher T, Leisner M.

PLoS One. 2013;8(1):e53457. doi: 10.1371/journal.pone.0053457. Epub 2013 Jan 11.

39.

Stoichiometry and perturbation studies of the LiaFSR system of Bacillus subtilis.

Schrecke K, Jordan S, Mascher T.

Mol Microbiol. 2013 Feb;87(4):769-88. doi: 10.1111/mmi.12130. Epub 2013 Jan 21.

40.

The LIKE system, a novel protein expression toolbox for Bacillus subtilis based on the liaI promoter.

Toymentseva AA, Schrecke K, Sharipova MR, Mascher T.

Microb Cell Fact. 2012 Oct 30;11:143. doi: 10.1186/1475-2859-11-143.

41.

Identification of proteins likely to be involved in morphogenesis, cell division, and signal transduction in Planctomycetes by comparative genomics.

Jogler C, Waldmann J, Huang X, Jogler M, Glöckner FO, Mascher T, Kolter R.

J Bacteriol. 2012 Dec;194(23):6419-30. doi: 10.1128/JB.01325-12. Epub 2012 Sep 21.

42.

Cell envelope stress response in cell wall-deficient L-forms of Bacillus subtilis.

Wolf D, Domínguez-Cuevas P, Daniel RA, Mascher T.

Antimicrob Agents Chemother. 2012 Nov;56(11):5907-15. doi: 10.1128/AAC.00770-12. Epub 2012 Sep 10.

43.

Extracytoplasmic function σ factors of the widely distributed group ECF41 contain a fused regulatory domain.

Wecke T, Halang P, Staroń A, Dufour YS, Donohue TJ, Mascher T.

Microbiologyopen. 2012 Jun;1(2):194-213. doi: 10.1002/mbo3.22.

44.

The rhamnolipid stress response of Bacillus subtilis.

Wecke T, Bauer T, Harth H, Mäder U, Mascher T.

FEMS Microbiol Lett. 2011 Oct;323(2):113-23. doi: 10.1111/j.1574-6968.2011.02367.x. Epub 2011 Aug 24.

45.

Antibiotic research in the age of omics: from expression profiles to interspecies communication.

Wecke T, Mascher T.

J Antimicrob Chemother. 2011 Dec;66(12):2689-704. doi: 10.1093/jac/dkr373. Epub 2011 Sep 19. Review.

PMID:
21930574
46.

The Bacillus subtilis GntR family repressor YtrA responds to cell wall antibiotics.

Salzberg LI, Luo Y, Hachmann AB, Mascher T, Helmann JD.

J Bacteriol. 2011 Oct;193(20):5793-801. doi: 10.1128/JB.05862-11. Epub 2011 Aug 19.

47.

Antimicrobial peptide sensing and detoxification modules: unravelling the regulatory circuitry of Staphylococcus aureus.

Gebhard S, Mascher T.

Mol Microbiol. 2011 Aug;81(3):581-7. doi: 10.1111/j.1365-2958.2011.07747.x. Epub 2011 Jul 12.

48.

The peroxide stress response of Bacillus licheniformis.

Schroeter R, Voigt B, Jürgen B, Methling K, Pöther DC, Schäfer H, Albrecht D, Mostertz J, Mäder U, Evers S, Maurer KH, Lalk M, Mascher T, Hecker M, Schweder T.

Proteomics. 2011 Jul;11(14):2851-66. doi: 10.1002/pmic.201000461. Epub 2011 Jun 14.

PMID:
21674797
49.

Coevolution of ABC transporters and two-component regulatory systems as resistance modules against antimicrobial peptides in Firmicutes Bacteria.

Dintner S, Staron A, Berchtold E, Petri T, Mascher T, Gebhard S.

J Bacteriol. 2011 Aug;193(15):3851-62. doi: 10.1128/JB.05175-11. Epub 2011 Jun 10.

50.

Peptide antibiotic sensing and detoxification modules of Bacillus subtilis.

Staroń A, Finkeisen DE, Mascher T.

Antimicrob Agents Chemother. 2011 Feb;55(2):515-25. doi: 10.1128/AAC.00352-10. Epub 2010 Nov 15.

Supplemental Content

Loading ...
Support Center