Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 52

1.
2.

The Physarum polycephalum Genome Reveals Extensive Use of Prokaryotic Two-Component and Metazoan-Type Tyrosine Kinase Signaling.

Schaap P, Barrantes I, Minx P, Sasaki N, Anderson RW, Bénard M, Biggar KK, Buchler NE, Bundschuh R, Chen X, Fronick C, Fulton L, Golderer G, Jahn N, Knoop V, Landweber LF, Maric C, Miller D, Noegel AA, Peace R, Pierron G, Sasaki T, Schallenberg-Rüdinger M, Schleicher M, Singh R, Spaller T, Storey KB, Suzuki T, Tomlinson C, Tyson JJ, Warren WC, Werner ER, Werner-Felmayer G, Wilson RK, Winckler T, Gott JM, Glöckner G, Marwan W.

Genome Biol Evol. 2015 Nov 27;8(1):109-25. doi: 10.1093/gbe/evv237.

3.

Gene expression kinetics in individual plasmodial cells reveal alternative programs of differential regulation during commitment and differentiation.

Rätzel V, Marwan W.

Dev Growth Differ. 2015 Jun;57(5):408-420. doi: 10.1111/dgd.12220. Epub 2015 May 26. Erratum in: Dev Growth Differ. 2016 Dec;58(9):757.

PMID:
26010487
4.

EXACT2: the semantics of biomedical protocols.

Soldatova LN, Nadis D, King RD, Basu PS, Haddi E, Baumlé V, Saunders NJ, Marwan W, Rudkin BB.

BMC Bioinformatics. 2014;15 Suppl 14:S5. doi: 10.1186/1471-2105-15-S14-S5. Epub 2014 Nov 27.

5.

Switch-like reprogramming of gene expression after fusion of multinucleate plasmodial cells of two Physarum polycephalum sporulation mutants.

Walter P, Hoffmann XK, Ebeling B, Haas M, Marwan W.

Biochem Biophys Res Commun. 2013 May 24;435(1):88-93. doi: 10.1016/j.bbrc.2013.04.043. Epub 2013 Apr 22.

PMID:
23618852
6.

JAK/STAT signalling--an executable model assembled from molecule-centred modules demonstrating a module-oriented database concept for systems and synthetic biology.

Blätke MA, Dittrich A, Rohr C, Heiner M, Schaper F, Marwan W.

Mol Biosyst. 2013 Jun;9(6):1290-307. doi: 10.1039/c3mb25593j. Epub 2013 Feb 26.

PMID:
23443149
7.

Physarum polycephalum mutants in the photocontrol of sporulation display altered patterns in the correlated expression of developmentally regulated genes.

Rätzel V, Ebeling B, Hoffmann XK, Tesmer J, Marwan W.

Dev Growth Differ. 2013 Feb;55(2):247-59. doi: 10.1111/dgd.12029. Epub 2013 Jan 25.

PMID:
23350669
8.

A next-generation sequencing approach to study the transcriptomic changes during the differentiation of physarum at the single-cell level.

Barrantes I, Leipzig J, Marwan W.

Gene Regul Syst Bio. 2012;6:127-37. doi: 10.4137/GRSB.S10224. Epub 2012 Oct 1.

9.

Reconstruction of extended Petri nets from time-series data by using logical control functions.

Durzinsky M, Marwan W, Wagler A.

J Math Biol. 2013 Jan;66(1-2):203-23.

PMID:
22302473
10.

Futile attempts to differentiate provide molecular evidence for individual differences within a population of cells during cellular reprogramming.

Hoffmann XK, Tesmer J, Souquet M, Marwan W.

FEMS Microbiol Lett. 2012 Apr;329(1):78-86. doi: 10.1111/j.1574-6968.2012.02506.x. Epub 2012 Feb 15.

11.

Petri nets in Snoopy: a unifying framework for the graphical display, computational modelling, and simulation of bacterial regulatory networks.

Marwan W, Rohr C, Heiner M.

Methods Mol Biol. 2012;804:409-37. doi: 10.1007/978-1-61779-361-5_21.

PMID:
22144165
12.
14.

Transcriptomic changes arising during light-induced sporulation in Physarum polycephalum.

Barrantes I, Glockner G, Meyer S, Marwan W.

BMC Genomics. 2010 Feb 17;11:115. doi: 10.1186/1471-2164-11-115.

15.

Snoopy--a unifying Petri net framework to investigate biomolecular networks.

Rohr C, Marwan W, Heiner M.

Bioinformatics. 2010 Apr 1;26(7):974-5. doi: 10.1093/bioinformatics/btq050. Epub 2010 Feb 7.

PMID:
20139470
16.

Systems biology. Amoeba-inspired network design.

Marwan W.

Science. 2010 Jan 22;327(5964):419-20. doi: 10.1126/science.1185570. No abstract available.

PMID:
20093462
17.

Quantitative analysis of signal transduction in motile and phototactic cells by computerized light stimulation and model based tracking.

Streif S, Staudinger WF, Oesterhelt D, Marwan W.

Rev Sci Instrum. 2009 Feb;80(2):023709. doi: 10.1063/1.3076408.

PMID:
19256655
18.

Flagellar rotation in the archaeon Halobacterium salinarum depends on ATP.

Streif S, Staudinger WF, Marwan W, Oesterhelt D.

J Mol Biol. 2008 Dec 5;384(1):1-8. doi: 10.1016/j.jmb.2008.08.057. Epub 2008 Aug 29.

PMID:
18786541
19.

Automatic reconstruction of molecular and genetic networks from discrete time series data.

Durzinsky M, Wagler A, Weismantel R, Marwan W.

Biosystems. 2008 Sep;93(3):181-90. doi: 10.1016/j.biosystems.2008.04.001. Epub 2008 Apr 20.

PMID:
18524471
20.

A first glimpse at the transcriptome of Physarum polycephalum.

Glöckner G, Golderer G, Werner-Felmayer G, Meyer S, Marwan W.

BMC Genomics. 2008 Jan 7;9:6. doi: 10.1186/1471-2164-9-6.

21.

A quantitative model of the switch cycle of an archaeal flagellar motor and its sensory control.

Nutsch T, Oesterhelt D, Gilles ED, Marwan W.

Biophys J. 2005 Oct;89(4):2307-23.

24.

Signal processing and flagellar motor switching during phototaxis of Halobacterium salinarum.

Nutsch T, Marwan W, Oesterhelt D, Gilles ED.

Genome Res. 2003 Nov;13(11):2406-12. Epub 2003 Oct 14.

25.
27.

A recombinant bispecific single-chain antibody induces targeted, supra-agonistic CD28-stimulation and tumor cell killing.

Grosse-Hovest L, Hartlapp I, Marwan W, Brem G, Rammensee HG, Jung G.

Eur J Immunol. 2003 May;33(5):1334-40.

31.

Regulation of switching frequency and bias of the bacterial flagellar motor by CheY and fumarate.

Montrone M, Eisenbach M, Oesterhelt D, Marwan W.

J Bacteriol. 1998 Jul;180(13):3375-80.

32.
34.
35.
36.
37.

Mechanism of photosensory adaptation in Halobacterium salinarium.

Marwan W, Bibikov SI, Montrone M, Oesterhelt D.

J Mol Biol. 1995 Mar 3;246(4):493-9.

PMID:
7877170
38.
39.
40.

The flagellar bundle of Halobacterium salinarium is inserted into a distinct polar cap structure.

Kupper J, Marwan W, Typke D, Grünberg H, Uwer U, Gluch M, Oesterhelt D.

J Bacteriol. 1994 Aug;176(16):5184-7.

41.
42.

Sensory rhodopsin-controlled release of the switch factor fumarate in Halobacterium salinarium.

Montrone M, Marwan W, Grünberg H, Musseleck S, Starostzik C, Oesterhelt D.

Mol Microbiol. 1993 Dec;10(5):1077-85.

PMID:
7934858
43.

Bacteriorhodopsin is involved in halobacterial photoreception.

Bibikov SI, Grishanin RN, Kaulen AD, Marwan W, Oesterhelt D, Skulachev VP.

Proc Natl Acad Sci U S A. 1993 Oct 15;90(20):9446-50.

45.

The proton pump bacteriorhodopsin is a photoreceptor for signal transduction in Halobacterium halobium.

Bibikov SI, Grishanin RN, Marwan W, Oesterhelt D, Skulachev VP.

FEBS Lett. 1991 Dec 16;295(1-3):223-6.

46.

Rotation and switching of the flagellar motor assembly in Halobacterium halobium.

Marwan W, Alam M, Oesterhelt D.

J Bacteriol. 1991 Mar;173(6):1971-7.

47.
48.

Signal transduction in Halobacterium depends on fumarate.

Marwan W, Schäfer W, Oesterhelt D.

EMBO J. 1990 Feb;9(2):355-62.

49.
50.

Single photon detection by an archaebacterium.

Marwan W, Hegemann P, Oesterhelt D.

J Mol Biol. 1988 Feb 20;199(4):663-4. No abstract available.

PMID:
3127593

Supplemental Content

Loading ...
Support Center