Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 100

1.

A Combined ELONA-(RT)qPCR Approach for Characterizing DNA and RNA Aptamers Selected against PCBP-2.

Moreno M, Fernández-Algar M, Fernández-Chamorro J, Ramajo J, Martínez-Salas E, Briones C.

Molecules. 2019 Mar 28;24(7). pii: E1213. doi: 10.3390/molecules24071213.

2.

Impact of RNA-Protein Interaction Modes on Translation Control: The Versatile Multidomain Protein Gemin5.

Francisco-Velilla R, Azman EB, Martinez-Salas E.

Bioessays. 2019 Apr;41(4):e1800241. doi: 10.1002/bies.201800241.

PMID:
30919488
3.

Thermostability of the Foot-and-Mouth Disease Virus Capsid Is Modulated by Lethal and Viability-Restoring Compensatory Amino Acid Substitutions.

López-Argüello S, Rincón V, Rodríguez-Huete A, Martínez-Salas E, Belsham GJ, Valbuena A, Mateu MG.

J Virol. 2019 May 1;93(10). pii: e02293-18. doi: 10.1128/JVI.02293-18. Print 2019 May 15.

PMID:
30867300
4.

Rab1b and ARF5 are novel RNA-binding proteins involved in FMDV IRES-driven RNA localization.

Fernandez-Chamorro J, Francisco-Velilla R, Ramajo J, Martinez-Salas E.

Life Sci Alliance. 2019 Jan 17;2(1). pii: e201800131. doi: 10.26508/lsa.201800131. Print 2019 Feb.

5.

Deconstructing internal ribosome entry site elements: an update of structural motifs and functional divergences.

Lozano G, Francisco-Velilla R, Martinez-Salas E.

Open Biol. 2018 Nov 28;8(11). pii: 180155. doi: 10.1098/rsob.180155. Review.

6.

Innate immune sensor LGP2 is cleaved by the Leader protease of foot-and-mouth disease virus.

Rodríguez Pulido M, Sánchez-Aparicio MT, Martínez-Salas E, García-Sastre A, Sobrino F, Sáiz M.

PLoS Pathog. 2018 Jun 29;14(6):e1007135. doi: 10.1371/journal.ppat.1007135. eCollection 2018 Jun.

7.

The landscape of the non-canonical RNA-binding site of Gemin5 unveils a feedback loop counteracting the negative effect on translation.

Francisco-Velilla R, Fernandez-Chamorro J, Dotu I, Martinez-Salas E.

Nucleic Acids Res. 2018 Aug 21;46(14):7339-7353. doi: 10.1093/nar/gky361.

8.

Ribosome-dependent conformational flexibility changes and RNA dynamics of IRES domains revealed by differential SHAPE.

Lozano G, Francisco-Velilla R, Martinez-Salas E.

Sci Rep. 2018 Apr 3;8(1):5545. doi: 10.1038/s41598-018-23845-x.

9.

Insights into Structural and Mechanistic Features of Viral IRES Elements.

Martinez-Salas E, Francisco-Velilla R, Fernandez-Chamorro J, Embarek AM.

Front Microbiol. 2018 Jan 4;8:2629. doi: 10.3389/fmicb.2017.02629. eCollection 2017. Review.

10.

G3BP1 interacts directly with the FMDV IRES and negatively regulates translation.

Galan A, Lozano G, Piñeiro D, Martinez-Salas E.

FEBS J. 2017 Oct;284(19):3202-3217. doi: 10.1111/febs.14184. Epub 2017 Sep 1.

11.

In-cell SHAPE uncovers dynamic interactions between the untranslated regions of the foot-and-mouth disease virus RNA.

Diaz-Toledano R, Lozano G, Martinez-Salas E.

Nucleic Acids Res. 2017 Feb 17;45(3):1416-1432. doi: 10.1093/nar/gkw795.

12.

The RNA-binding protein Gemin5 binds directly to the ribosome and regulates global translation.

Francisco-Velilla R, Fernandez-Chamorro J, Ramajo J, Martinez-Salas E.

Nucleic Acids Res. 2016 Sep 30;44(17):8335-51. doi: 10.1093/nar/gkw702. Epub 2016 Aug 9.

13.

RNAiFold2T: Constraint Programming design of thermo-IRES switches.

Garcia-Martin JA, Dotu I, Fernandez-Chamorro J, Lozano G, Ramajo J, Martinez-Salas E, Clote P.

Bioinformatics. 2016 Jun 15;32(12):i360-i368. doi: 10.1093/bioinformatics/btw265.

14.

Designing synthetic RNAs to determine the relevance of structural motifs in picornavirus IRES elements.

Fernandez-Chamorro J, Lozano G, Garcia-Martin JA, Ramajo J, Dotu I, Clote P, Martinez-Salas E.

Sci Rep. 2016 Apr 7;6:24243. doi: 10.1038/srep24243.

15.

Modeling Three-Dimensional Structural Motifs of Viral IRES.

Lozano G, Fernandez N, Martinez-Salas E.

J Mol Biol. 2016 Feb 27;428(5 Pt A):767-776. doi: 10.1016/j.jmb.2016.01.005. Epub 2016 Jan 14. Review.

PMID:
26778619
16.

Fingerprinting the junctions of RNA structure by an open-paddlewheel diruthenium compound.

Lozano G, Jimenez-Aparicio R, Herrero S, Martinez-Salas E.

RNA. 2016 Mar;22(3):330-8. doi: 10.1261/rna.054353.115. Epub 2016 Jan 12.

17.

RNA-protein interaction methods to study viral IRES elements.

Francisco-Velilla R, Fernandez-Chamorro J, Lozano G, Diaz-Toledano R, Martínez-Salas E.

Methods. 2015 Dec;91:3-12. doi: 10.1016/j.ymeth.2015.06.023. Epub 2015 Jul 2. Review.

18.

Structural insights into viral IRES-dependent translation mechanisms.

Lozano G, Martínez-Salas E.

Curr Opin Virol. 2015 Jun;12:113-20. doi: 10.1016/j.coviro.2015.04.008. Epub 2015 May 22. Review.

19.

Gemin5: A Multitasking RNA-Binding Protein Involved in Translation Control.

Piñeiro D, Fernandez-Chamorro J, Francisco-Velilla R, Martinez-Salas E.

Biomolecules. 2015 Apr 17;5(2):528-44. doi: 10.3390/biom5020528. Review.

20.

Local RNA flexibility perturbation of the IRES element induced by a novel ligand inhibits viral RNA translation.

Lozano G, Trapote A, Ramajo J, Elduque X, Grandas A, Robles J, Pedroso E, Martínez-Salas E.

RNA Biol. 2015;12(5):555-68. doi: 10.1080/15476286.2015.1025190.

21.

Picornavirus IRES elements: RNA structure and host protein interactions.

Martínez-Salas E, Francisco-Velilla R, Fernandez-Chamorro J, Lozano G, Diaz-Toledano R.

Virus Res. 2015 Aug 3;206:62-73. doi: 10.1016/j.virusres.2015.01.012. Epub 2015 Jan 21. Review.

PMID:
25617758
22.

Functional and structural analysis of maize hsp101 IRES.

Jiménez-González AS, Fernández N, Martínez-Salas E, Sánchez de Jiménez E.

PLoS One. 2014 Sep 15;9(9):e107459. doi: 10.1371/journal.pone.0107459. eCollection 2014.

23.

Increased replicative fitness can lead to decreased drug sensitivity of hepatitis C virus.

Sheldon J, Beach NM, Moreno E, Gallego I, Piñeiro D, Martínez-Salas E, Gregori J, Quer J, Esteban JI, Rice CM, Domingo E, Perales C.

J Virol. 2014 Oct;88(20):12098-111. doi: 10.1128/JVI.01860-14. Epub 2014 Aug 13.

24.

Magnesium-dependent folding of a picornavirus IRES element modulates RNA conformation and eIF4G interaction.

Lozano G, Fernandez N, Martinez-Salas E.

FEBS J. 2014 Aug;281(16):3685-700. doi: 10.1111/febs.12890. Epub 2014 Jul 14.

25.

Identification of novel non-canonical RNA-binding sites in Gemin5 involved in internal initiation of translation.

Fernandez-Chamorro J, Piñeiro D, Gordon JM, Ramajo J, Francisco-Velilla R, Macias MJ, Martinez-Salas E.

Nucleic Acids Res. 2014 May;42(9):5742-54. doi: 10.1093/nar/gku177. Epub 2014 Mar 5.

26.

Enhanced IRES activity by the 3'UTR element determines the virulence of FMDV isolates.

García-Nuñez S, Gismondi MI, König G, Berinstein A, Taboga O, Rieder E, Martínez-Salas E, Carrillo E.

Virology. 2014 Jan 5;448:303-13. doi: 10.1016/j.virol.2013.10.027. Epub 2013 Nov 9.

27.

Using RNA inverse folding to identify IRES-like structural subdomains.

Dotu I, Lozano G, Clote P, Martinez-Salas E.

RNA Biol. 2013 Dec;10(12):1842-52. doi: 10.4161/rna.26994. Epub 2013 Nov 4.

28.

RNA-binding proteins impacting on internal initiation of translation.

Martínez-Salas E, Lozano G, Fernandez-Chamorro J, Francisco-Velilla R, Galan A, Diaz R.

Int J Mol Sci. 2013 Nov 1;14(11):21705-26. doi: 10.3390/ijms141121705. Review.

29.

Evolutionary conserved motifs constrain the RNA structure organization of picornavirus IRES.

Fernández N, Buddrus L, Piñeiro D, Martínez-Salas E.

FEBS Lett. 2013 May 2;587(9):1353-8. doi: 10.1016/j.febslet.2013.03.005. Epub 2013 Mar 15.

30.

Gemin5 promotes IRES interaction and translation control through its C-terminal region.

Piñeiro D, Fernández N, Ramajo J, Martínez-Salas E.

Nucleic Acids Res. 2013 Jan;41(2):1017-28. doi: 10.1093/nar/gks1212. Epub 2012 Dec 5.

31.

RNA structural elements of hepatitis C virus controlling viral RNA translation and the implications for viral pathogenesis.

Piñeiro D, Martinez-Salas E.

Viruses. 2012 Oct 19;4(10):2233-50. doi: 10.3390/v4102233. Review.

32.

Exploring IRES region accessibility by interference of foot-and-mouth disease virus infectivity.

Fajardo T Jr, Rosas MF, Sobrino F, Martinez-Salas E.

PLoS One. 2012;7(7):e41382. doi: 10.1371/journal.pone.0041382. Epub 2012 Jul 18.

33.

Alternative Mechanisms to Initiate Translation in Eukaryotic mRNAs.

Martínez-Salas E, Piñeiro D, Fernández N.

Comp Funct Genomics. 2012;2012:391546. doi: 10.1155/2012/391546. Epub 2012 Feb 16.

34.

Gemin5 proteolysis reveals a novel motif to identify L protease targets.

Piñeiro D, Ramajo J, Bradrick SS, Martínez-Salas E.

Nucleic Acids Res. 2012 Jun;40(11):4942-53. doi: 10.1093/nar/gks172. Epub 2012 Feb 22.

35.

Structural basis for the biological relevance of the invariant apical stem in IRES-mediated translation.

Fernández N, Fernandez-Miragall O, Ramajo J, García-Sacristán A, Bellora N, Eyras E, Briones C, Martínez-Salas E.

Nucleic Acids Res. 2011 Oct;39(19):8572-85. doi: 10.1093/nar/gkr560. Epub 2011 Jul 8.

36.

Structural analysis provides insights into the modular organization of picornavirus IRES.

Fernández N, García-Sacristán A, Ramajo J, Briones C, Martínez-Salas E.

Virology. 2011 Jan 20;409(2):251-61. doi: 10.1016/j.virol.2010.10.013. Epub 2010 Nov 5.

37.

Tailoring the switch from IRES-dependent to 5'-end-dependent translation with the RNase P ribozyme.

Fernández N, Martínez-Salas E.

RNA. 2010 Apr;16(4):852-62. doi: 10.1261/rna.1973710. Epub 2010 Mar 1.

38.

Insights into the biology of IRES elements through riboproteomic approaches.

Pacheco A, Martinez-Salas E.

J Biomed Biotechnol. 2010;2010:458927. doi: 10.1155/2010/458927. Epub 2010 Feb 2. Review.

39.

Rescue of internal initiation of translation by RNA complementation provides evidence for a distribution of functions between individual IRES domains.

Serrano P, Ramajo J, Martínez-Salas E.

Virology. 2009 May 25;388(1):221-9. doi: 10.1016/j.virol.2009.03.021. Epub 2009 Apr 21.

40.

A novel role for Gemin5 in mRNA translation.

Pacheco A, López de Quinto S, Ramajo J, Fernández N, Martínez-Salas E.

Nucleic Acids Res. 2009 Feb;37(2):582-90. doi: 10.1093/nar/gkn979. Epub 2008 Dec 9.

41.

Riboproteomic analysis of polypeptides interacting with the internal ribosome-entry site element of foot-and-mouth disease viral RNA.

Pacheco A, Reigadas S, Martínez-Salas E.

Proteomics. 2008 Nov;8(22):4782-90. doi: 10.1002/pmic.200800338.

PMID:
18937254
42.

Preface: functionally critical RNA structures found in positive-sense RNA viruses.

Kieft J, Martinez-Salas E.

Virus Res. 2009 Feb;139(2):135-6. doi: 10.1016/j.virusres.2008.08.001. Epub 2008 Sep 16. No abstract available.

PMID:
18761042
43.

Susceptibility to viral infection is enhanced by stable expression of 3A or 3AB proteins from foot-and-mouth disease virus.

Rosas MF, Vieira YA, Postigo R, Martín-Acebes MA, Armas-Portela R, Martínez-Salas E, Sobrino F.

Virology. 2008 Oct 10;380(1):34-45. doi: 10.1016/j.virol.2008.06.040. Epub 2008 Aug 9.

44.

Relevance of RNA structure for the activity of picornavirus IRES elements.

Fernández-Miragall O, López de Quinto S, Martínez-Salas E.

Virus Res. 2009 Feb;139(2):172-82. doi: 10.1016/j.virusres.2008.07.009. Epub 2008 Aug 15. Review.

PMID:
18692097
45.

Internal translation initiation on the foot-and-mouth disease virus IRES is affected by ribosomal stalk conformation.

Martínez-Azorín F, Remacha M, Martínez-Salas E, Ballesta JP.

FEBS Lett. 2008 Sep 3;582(20):3029-32. doi: 10.1016/j.febslet.2008.07.039. Epub 2008 Aug 7.

46.

The impact of RNA structure on picornavirus IRES activity.

Martínez-Salas E.

Trends Microbiol. 2008 May;16(5):230-7. doi: 10.1016/j.tim.2008.01.013. Epub 2008 Apr 15.

PMID:
18420413
47.

New insights into internal ribosome entry site elements relevant for viral gene expression.

Martínez-Salas E, Pacheco A, Serrano P, Fernandez N.

J Gen Virol. 2008 Mar;89(Pt 3):611-26. doi: 10.1099/vir.0.83426-0. Review.

PMID:
18272751
48.
49.

Differential factor requirement to assemble translation initiation complexes at the alternative start codons of foot-and-mouth disease virus RNA.

Andreev DE, Fernandez-Miragall O, Ramajo J, Dmitriev SE, Terenin IM, Martinez-Salas E, Shatsky IN.

RNA. 2007 Aug;13(8):1366-74. Epub 2007 Jun 25.

Supplemental Content

Loading ...
Support Center