Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 69


Discovery of novel bacterial queuine salvage enzymes and pathways in human pathogens.

Yuan Y, Zallot R, Grove TL, Payan DJ, Martin-Verstraete I, Šepić S, Balamkundu S, Neelakandan R, Gadi VK, Liu CF, Swairjo MA, Dedon PC, Almo SC, Gerlt JA, de Crécy-Lagard V.

Proc Natl Acad Sci U S A. 2019 Sep 17;116(38):19126-19135. doi: 10.1073/pnas.1909604116. Epub 2019 Sep 3.


A microbiota-generated bile salt induces biofilm formation in Clostridium difficile.

Dubois T, Tremblay YDN, Hamiot A, Martin-Verstraete I, Deschamps J, Monot M, Briandet R, Dupuy B.

NPJ Biofilms Microbiomes. 2019 May 9;5:14. doi: 10.1038/s41522-019-0087-4. eCollection 2019.


The Ser/Thr Kinase PrkC Participates in Cell Wall Homeostasis and Antimicrobial Resistance in Clostridium difficile.

Cuenot E, Garcia-Garcia T, Douche T, Gorgette O, Courtin P, Denis-Quanquin S, Hoys S, Tremblay YDN, Matondo M, Chapot-Chartier MP, Janoir C, Dupuy B, Candela T, Martin-Verstraete I.

Infect Immun. 2019 Jul 23;87(8). pii: e00005-19. doi: 10.1128/IAI.00005-19. Print 2019 Aug.


The σB signalling activation pathway in the enteropathogen Clostridioides difficile.

Kint N, Alves Feliciano C, Hamiot A, Denic M, Dupuy B, Martin-Verstraete I.

Environ Microbiol. 2019 Aug;21(8):2852-2870. doi: 10.1111/1462-2920.14642. Epub 2019 May 15.


CotL, a new morphogenetic spore coat protein of Clostridium difficile.

Alves Feliciano C, Douché T, Giai Gianetto Q, Matondo M, Martin-Verstraete I, Dupuy B.

Environ Microbiol. 2019 Mar;21(3):984-1003. doi: 10.1111/1462-2920.14505. Epub 2019 Feb 21.


Clostridium difficile Biofilm: Remodeling Metabolism and Cell Surface to Build a Sparse and Heterogeneously Aggregated Architecture.

Poquet I, Saujet L, Canette A, Monot M, Mihajlovic J, Ghigo JM, Soutourina O, Briandet R, Martin-Verstraete I, Dupuy B.

Front Microbiol. 2018 Sep 12;9:2084. doi: 10.3389/fmicb.2018.02084. eCollection 2018.


Discovery of new type I toxin-antitoxin systems adjacent to CRISPR arrays in Clostridium difficile.

Maikova A, Peltier J, Boudry P, Hajnsdorf E, Kint N, Monot M, Poquet I, Martin-Verstraete I, Dupuy B, Soutourina O.

Nucleic Acids Res. 2018 May 18;46(9):4733-4751. doi: 10.1093/nar/gky124.


Silver potentiates aminoglycoside toxicity by enhancing their uptake.

Herisse M, Duverger Y, Martin-Verstraete I, Barras F, Ezraty B.

Mol Microbiol. 2017 Jul;105(1):115-126. doi: 10.1111/mmi.13687. Epub 2017 Apr 24.


The alternative sigma factor σB plays a crucial role in adaptive strategies of Clostridium difficile during gut infection.

Kint N, Janoir C, Monot M, Hoys S, Soutourina O, Dupuy B, Martin-Verstraete I.

Environ Microbiol. 2017 May;19(5):1933-1958. doi: 10.1111/1462-2920.13696. Epub 2017 Mar 21.


A Recombination Directionality Factor Controls the Cell Type-Specific Activation of σK and the Fidelity of Spore Development in Clostridium difficile.

Serrano M, Kint N, Pereira FC, Saujet L, Boudry P, Dupuy B, Henriques AO, Martin-Verstraete I.

PLoS Genet. 2016 Sep 15;12(9):e1006312. doi: 10.1371/journal.pgen.1006312. eCollection 2016 Sep.


Control of Clostridium difficile Physiopathology in Response to Cysteine Availability.

Dubois T, Dancer-Thibonnier M, Monot M, Hamiot A, Bouillaut L, Soutourina O, Martin-Verstraete I, Dupuy B.

Infect Immun. 2016 Jul 21;84(8):2389-405. doi: 10.1128/IAI.00121-16. Print 2016 Aug.


The Regulatory Networks That Control Clostridium difficile Toxin Synthesis.

Martin-Verstraete I, Peltier J, Dupuy B.

Toxins (Basel). 2016 May 14;8(5). pii: E153. doi: 10.3390/toxins8050153. Review.


Cpe1786/IscR of Clostridium perfringens represses expression of genes involved in Fe-S cluster biogenesis.

André G, Haudecoeur E, Courtois E, Monot M, Dupuy B, Rodionov DA, Martin-Verstraete I.

Res Microbiol. 2017 May;168(4):345-355. doi: 10.1016/j.resmic.2016.03.002. Epub 2016 Mar 26.


Riboswitch discovery by combining RNA-seq and genome-wide identification of transcriptional start sites.

Rosinski-Chupin I, Soutourina O, Martin-Verstraete I.

Methods Enzymol. 2014;549:3-27. doi: 10.1016/B978-0-12-801122-5.00001-5.


The regulatory network controlling spore formation in Clostridium difficile.

Saujet L, Pereira FC, Henriques AO, Martin-Verstraete I.

FEMS Microbiol Lett. 2014 Sep;358(1):1-10. doi: 10.1111/1574-6968.12540. Epub 2014 Aug 12. Review.


Pleiotropic role of the RNA chaperone protein Hfq in the human pathogen Clostridium difficile.

Boudry P, Gracia C, Monot M, Caillet J, Saujet L, Hajnsdorf E, Dupuy B, Martin-Verstraete I, Soutourina O.

J Bacteriol. 2014 Sep;196(18):3234-48. doi: 10.1128/JB.01923-14. Epub 2014 Jun 30.


The spore differentiation pathway in the enteric pathogen Clostridium difficile.

Pereira FC, Saujet L, Tomé AR, Serrano M, Monot M, Couture-Tosi E, Martin-Verstraete I, Dupuy B, Henriques AO.

PLoS Genet. 2013;9(10):e1003782. doi: 10.1371/journal.pgen.1003782. Epub 2013 Oct 3.


Genome-wide analysis of cell type-specific gene transcription during spore formation in Clostridium difficile.

Saujet L, Pereira FC, Serrano M, Soutourina O, Monot M, Shelyakin PV, Gelfand MS, Dupuy B, Henriques AO, Martin-Verstraete I.

PLoS Genet. 2013;9(10):e1003756. doi: 10.1371/journal.pgen.1003756. Epub 2013 Oct 3.


Genome-wide identification of regulatory RNAs in the human pathogen Clostridium difficile.

Soutourina OA, Monot M, Boudry P, Saujet L, Pichon C, Sismeiro O, Semenova E, Severinov K, Le Bouguenec C, Coppée JY, Dupuy B, Martin-Verstraete I.

PLoS Genet. 2013 May;9(5):e1003493. doi: 10.1371/journal.pgen.1003493. Epub 2013 May 9.


PlcRa, a new quorum-sensing regulator from Bacillus cereus, plays a role in oxidative stress responses and cysteine metabolism in stationary phase.

Huillet E, Tempelaars MH, André-Leroux G, Wanapaisan P, Bridoux L, Makhzami S, Panbangred W, Martin-Verstraete I, Abee T, Lereclus D.

PLoS One. 2012;7(12):e51047. doi: 10.1371/journal.pone.0051047. Epub 2012 Dec 11.


Global transcriptional control by glucose and carbon regulator CcpA in Clostridium difficile.

Antunes A, Camiade E, Monot M, Courtois E, Barbut F, Sernova NV, Rodionov DA, Martin-Verstraete I, Dupuy B.

Nucleic Acids Res. 2012 Nov;40(21):10701-18. doi: 10.1093/nar/gks864. Epub 2012 Sep 18.


Insights into the Rrf2 repressor family--the structure of CymR, the global cysteine regulator of Bacillus subtilis.

Shepard W, Soutourina O, Courtois E, England P, Haouz A, Martin-Verstraete I.

FEBS J. 2011 Aug;278(15):2689-701. doi: 10.1111/j.1742-4658.2011.08195.x. Epub 2011 Jul 1.


The key sigma factor of transition phase, SigH, controls sporulation, metabolism, and virulence factor expression in Clostridium difficile.

Saujet L, Monot M, Dupuy B, Soutourina O, Martin-Verstraete I.

J Bacteriol. 2011 Jul;193(13):3186-96. doi: 10.1128/JB.00272-11. Epub 2011 May 13.


Reannotation of the genome sequence of Clostridium difficile strain 630.

Monot M, Boursaux-Eude C, Thibonnier M, Vallenet D, Moszer I, Medigue C, Martin-Verstraete I, Dupuy B.

J Med Microbiol. 2011 Aug;60(Pt 8):1193-9. doi: 10.1099/jmm.0.030452-0. Epub 2011 Feb 24.


CcpA-mediated repression of Clostridium difficile toxin gene expression.

Antunes A, Martin-Verstraete I, Dupuy B.

Mol Microbiol. 2011 Feb;79(4):882-99. doi: 10.1111/j.1365-2958.2010.07495.x. Epub 2010 Dec 28.


Global regulation of the response to sulfur availability in the cheese-related bacterium Brevibacterium aurantiacum.

Forquin MP, Hébert A, Roux A, Aubert J, Proux C, Heilier JF, Landaud S, Junot C, Bonnarme P, Martin-Verstraete I.

Appl Environ Microbiol. 2011 Feb;77(4):1449-59. doi: 10.1128/AEM.01708-10. Epub 2010 Dec 17.


Global regulation of gene expression in response to cysteine availability in Clostridium perfringens.

André G, Haudecoeur E, Monot M, Ohtani K, Shimizu T, Dupuy B, Martin-Verstraete I.

BMC Microbiol. 2010 Sep 7;10:234. doi: 10.1186/1471-2180-10-234.


Complex phenotypes of a mutant inactivated for CymR, the global regulator of cysteine metabolism in Bacillus subtilis.

Hullo MF, Martin-Verstraete I, Soutourina O.

FEMS Microbiol Lett. 2010 Aug 1;309(2):201-7. doi: 10.1111/j.1574-6968.2010.02043.x. Epub 2010 Jun 17.


The pleiotropic CymR regulator of Staphylococcus aureus plays an important role in virulence and stress response.

Soutourina O, Dubrac S, Poupel O, Msadek T, Martin-Verstraete I.

PLoS Pathog. 2010 May 13;6(5):e1000894. doi: 10.1371/journal.ppat.1000894.


Identification of brevibacteriaceae by multilocus sequence typing and comparative genomic hybridization analyses.

Forquin MP, Duvergey H, Proux C, Loux V, Mounier J, Landaud S, Coppée JY, Gibrat JF, Bonnarme P, Martin-Verstraete I, Vallaeys T.

Appl Environ Microbiol. 2009 Oct;75(19):6406-9. doi: 10.1128/AEM.00224-09. Epub 2009 Jul 31.


CymR, the master regulator of cysteine metabolism in Staphylococcus aureus, controls host sulphur source utilization and plays a role in biofilm formation.

Soutourina O, Poupel O, Coppée JY, Danchin A, Msadek T, Martin-Verstraete I.

Mol Microbiol. 2009 Jul;73(2):194-211. doi: 10.1111/j.1365-2958.2009.06760.x. Epub 2009 Jun 8.


The CymR regulator in complex with the enzyme CysK controls cysteine metabolism in Bacillus subtilis.

Tanous C, Soutourina O, Raynal B, Hullo MF, Mervelet P, Gilles AM, Noirot P, Danchin A, England P, Martin-Verstraete I.

J Biol Chem. 2008 Dec 19;283(51):35551-60. doi: 10.1074/jbc.M805951200. Epub 2008 Oct 29.


S-box and T-box riboswitches and antisense RNA control a sulfur metabolic operon of Clostridium acetobutylicum.

André G, Even S, Putzer H, Burguière P, Croux C, Danchin A, Martin-Verstraete I, Soutourina O.

Nucleic Acids Res. 2008 Oct;36(18):5955-69. doi: 10.1093/nar/gkn601. Epub 2008 Sep 23.


Spx mediates oxidative stress regulation of the methionine sulfoxide reductases operon in Bacillus subtilis.

You C, Sekowska A, Francetic O, Martin-Verstraete I, Wang Y, Danchin A.

BMC Microbiol. 2008 Jul 28;8:128. doi: 10.1186/1471-2180-8-128.


Reconstruction and analysis of the genetic and metabolic regulatory networks of the central metabolism of Bacillus subtilis.

Goelzer A, Bekkal Brikci F, Martin-Verstraete I, Noirot P, Bessières P, Aymerich S, Fromion V.

BMC Syst Biol. 2008 Feb 26;2:20. doi: 10.1186/1752-0509-2-20.


Control of methionine synthesis and uptake by MetR and homocysteine in Streptococcus mutans.

Sperandio B, Gautier C, McGovern S, Ehrlich DS, Renault P, Martin-Verstraete I, Guédon E.

J Bacteriol. 2007 Oct;189(19):7032-44. Epub 2007 Aug 3.


Conversion of methionine to cysteine in Bacillus subtilis and its regulation.

Hullo MF, Auger S, Soutourina O, Barzu O, Yvon M, Danchin A, Martin-Verstraete I.

J Bacteriol. 2007 Jan;189(1):187-97. Epub 2006 Oct 20.


Global control of cysteine metabolism by CymR in Bacillus subtilis.

Even S, Burguière P, Auger S, Soutourina O, Danchin A, Martin-Verstraete I.

J Bacteriol. 2006 Mar;188(6):2184-97.


Regulation of the Bacillus subtilis ytmI operon, involved in sulfur metabolism.

Burguière P, Fert J, Guillouard I, Auger S, Danchin A, Martin-Verstraete I.

J Bacteriol. 2005 Sep;187(17):6019-30.


The PatB protein of Bacillus subtilis is a C-S-lyase.

Auger S, Gomez MP, Danchin A, Martin-Verstraete I.

Biochimie. 2005 Feb;87(2):231-8.


Three different systems participate in L-cystine uptake in Bacillus subtilis.

Burguière P, Auger S, Hullo MF, Danchin A, Martin-Verstraete I.

J Bacteriol. 2004 Aug;186(15):4875-84.


The metNPQ operon of Bacillus subtilis encodes an ABC permease transporting methionine sulfoxide, D- and L-methionine.

Hullo MF, Auger S, Dassa E, Danchin A, Martin-Verstraete I.

Res Microbiol. 2004 Mar;155(2):80-6.


Global expression profile of Bacillus subtilis grown in the presence of sulfate or methionine.

Auger S, Danchin A, Martin-Verstraete I.

J Bacteriol. 2002 Sep;184(18):5179-86.


Identification of Bacillus subtilis CysL, a regulator of the cysJI operon, which encodes sulfite reductase.

Guillouard I, Auger S, Hullo MF, Chetouani F, Danchin A, Martin-Verstraete I.

J Bacteriol. 2002 Sep;184(17):4681-9.


The metIC operon involved in methionine biosynthesis in Bacillus subtilis is controlled by transcription antitermination.

Auger S, Yuen WH, Danchin A, Martin-Verstraete I.

Microbiology. 2002 Feb;148(Pt 2):507-18.


CotA of Bacillus subtilis is a copper-dependent laccase.

Hullo MF, Moszer I, Danchin A, Martin-Verstraete I.

J Bacteriol. 2001 Sep;183(18):5426-30.


Characterization of glucose-repression-resistant mutants of Bacillus subtilis: identification of the glcR gene.

Stülke J, Martin-Verstraete I, Glaser P, Rapoport G.

Arch Microbiol. 2001 Jun;175(6):441-9.


Mutations lowering the phosphatase activity of HPr kinase/phosphatase switch off carbon metabolism.

Monedero V, Poncet S, Mijakovic I, Fieulaine S, Dossonnet V, Martin-Verstraete I, Nessler S, Deutscher J.

EMBO J. 2001 Aug 1;20(15):3928-37.


Sulfur-limitation-regulated proteins in Bacillus subtilis: a two-dimensional gel electrophoresis study.

Coppée JY, Auger S, Turlin E, Sekowska A, Le Caer JP, Labas V, Vagner V, Danchin A, Martin-Verstraete I.

Microbiology. 2001 Jun;147(Pt 6):1631-40.


The catabolite control protein CcpA controls ammonium assimilation in Bacillus subtilis.

Faires N, Tobisch S, Bachem S, Martin-Verstraete I, Hecker M, Stülke J.

J Mol Microbiol Biotechnol. 1999 Aug;1(1):141-8.


Supplemental Content

Loading ...
Support Center