Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 67

1.

Cas9 Cleavage of Viral Genomes Primes the Acquisition of New Immunological Memories.

Nussenzweig PM, McGinn J, Marraffini LA.

Cell Host Microbe. 2019 Sep 27. pii: S1931-3128(19)30469-X. doi: 10.1016/j.chom.2019.09.002. [Epub ahead of print]

PMID:
31585845
2.

Cas13-induced cellular dormancy prevents the rise of CRISPR-resistant bacteriophage.

Meeske AJ, Nakandakari-Higa S, Marraffini LA.

Nature. 2019 Jun;570(7760):241-245. doi: 10.1038/s41586-019-1257-5. Epub 2019 May 29.

PMID:
31142834
3.

A High-Throughput Platform to Identify Small-Molecule Inhibitors of CRISPR-Cas9.

Maji B, Gangopadhyay SA, Lee M, Shi M, Wu P, Heler R, Mok B, Lim D, Siriwardena SU, Paul B, Dančík V, Vetere A, Mesleh MF, Marraffini LA, Liu DR, Clemons PA, Wagner BK, Choudhary A.

Cell. 2019 May 2;177(4):1067-1079.e19. doi: 10.1016/j.cell.2019.04.009.

PMID:
31051099
4.

Three New Cs for CRISPR: Collateral, Communicate, Cooperate.

Varble A, Marraffini LA.

Trends Genet. 2019 Jun;35(6):446-456. doi: 10.1016/j.tig.2019.03.009. Epub 2019 Apr 27. Review.

PMID:
31036344
5.

Recombination between phages and CRISPR-cas loci facilitates horizontal gene transfer in staphylococci.

Varble A, Meaden S, Barrangou R, Westra ER, Marraffini LA.

Nat Microbiol. 2019 Jun;4(6):956-963. doi: 10.1038/s41564-019-0400-2. Epub 2019 Mar 18.

6.

Spacer Acquisition Rates Determine the Immunological Diversity of the Type II CRISPR-Cas Immune Response.

Heler R, Wright AV, Vucelja M, Doudna JA, Marraffini LA.

Cell Host Microbe. 2019 Feb 13;25(2):242-249.e3. doi: 10.1016/j.chom.2018.12.016. Epub 2019 Jan 29.

PMID:
30709780
7.

Non-specific degradation of transcripts promotes plasmid clearance during type III-A CRISPR-Cas immunity.

Rostøl JT, Marraffini LA.

Nat Microbiol. 2019 Apr;4(4):656-662. doi: 10.1038/s41564-018-0353-x. Epub 2019 Jan 28.

8.

Dynamics of Cas10 Govern Discrimination between Self and Non-self in Type III CRISPR-Cas Immunity.

Wang L, Mo CY, Wasserman MR, Rostøl JT, Marraffini LA, Liu S.

Mol Cell. 2019 Jan 17;73(2):278-290.e4. doi: 10.1016/j.molcel.2018.11.008. Epub 2018 Nov 29.

PMID:
30503774
9.

Type III-A CRISPR-Cas Csm Complexes: Assembly, Periodic RNA Cleavage, DNase Activity Regulation, and Autoimmunity.

Jia N, Mo CY, Wang C, Eng ET, Marraffini LA, Patel DJ.

Mol Cell. 2019 Jan 17;73(2):264-277.e5. doi: 10.1016/j.molcel.2018.11.007. Epub 2018 Nov 29.

PMID:
30503773
10.

If You'd Like to Stop a Type III CRISPR Ribonuclease, Then You Should Put a Ring (Nuclease) on It.

Mo CY, Marraffini LA.

Mol Cell. 2018 Nov 15;72(4):608-609. doi: 10.1016/j.molcel.2018.10.048.

PMID:
30444997
11.

Molecular mechanisms of CRISPR-Cas spacer acquisition.

McGinn J, Marraffini LA.

Nat Rev Microbiol. 2019 Jan;17(1):7-12. doi: 10.1038/s41579-018-0071-7. Review.

PMID:
30171202
12.

RNA Guide Complementarity Prevents Self-Targeting in Type VI CRISPR Systems.

Meeske AJ, Marraffini LA.

Mol Cell. 2018 Sep 6;71(5):791-801.e3. doi: 10.1016/j.molcel.2018.07.013. Epub 2018 Aug 16.

13.

Viral Teamwork Pushes CRISPR to the Breaking Point.

Nussenzweig PM, Marraffini LA.

Cell. 2018 Aug 9;174(4):772-774. doi: 10.1016/j.cell.2018.07.025.

14.

Enhanced Bacterial Immunity and Mammalian Genome Editing via RNA-Polymerase-Mediated Dislodging of Cas9 from Double-Strand DNA Breaks.

Clarke R, Heler R, MacDougall MS, Yeo NC, Chavez A, Regan M, Hanakahi L, Church GM, Marraffini LA, Merrill BJ.

Mol Cell. 2018 Jul 5;71(1):42-55.e8. doi: 10.1016/j.molcel.2018.06.005.

15.

Incomplete prophage tolerance by type III-A CRISPR-Cas systems reduces the fitness of lysogenic hosts.

Goldberg GW, McMillan EA, Varble A, Modell JW, Samai P, Jiang W, Marraffini LA.

Nat Commun. 2018 Jan 4;9(1):61. doi: 10.1038/s41467-017-02557-2.

16.

Type III CRISPR-Cas systems: when DNA cleavage just isn't enough.

Pyenson NC, Marraffini LA.

Curr Opin Microbiol. 2017 Jun;37:150-154. doi: 10.1016/j.mib.2017.08.003. Epub 2017 Aug 31. Review.

PMID:
28865392
17.

Broad Targeting Specificity during Bacterial Type III CRISPR-Cas Immunity Constrains Viral Escape.

Pyenson NC, Gayvert K, Varble A, Elemento O, Marraffini LA.

Cell Host Microbe. 2017 Sep 13;22(3):343-353.e3. doi: 10.1016/j.chom.2017.07.016. Epub 2017 Aug 17.

18.

Type III CRISPR-Cas systems produce cyclic oligoadenylate second messengers.

Niewoehner O, Garcia-Doval C, Rostøl JT, Berk C, Schwede F, Bigler L, Hall J, Marraffini LA, Jinek M.

Nature. 2017 Aug 31;548(7669):543-548. doi: 10.1038/nature23467. Epub 2017 Jul 19.

PMID:
28722012
19.

CRISPR-Cas systems exploit viral DNA injection to establish and maintain adaptive immunity.

Modell JW, Jiang W, Marraffini LA.

Nature. 2017 Apr 6;544(7648):101-104. doi: 10.1038/nature21719. Epub 2017 Mar 29.

20.

Mutations in Cas9 Enhance the Rate of Acquisition of Viral Spacer Sequences during the CRISPR-Cas Immune Response.

Heler R, Wright AV, Vucelja M, Bikard D, Doudna JA, Marraffini LA.

Mol Cell. 2017 Jan 5;65(1):168-175. doi: 10.1016/j.molcel.2016.11.031. Epub 2016 Dec 22.

21.

Sensing danger.

Marraffini LA.

Proc Natl Acad Sci U S A. 2017 Jan 3;114(1):15-16. doi: 10.1073/pnas.1618747114. Epub 2016 Dec 20. No abstract available.

22.

CRISPR-Cas Systems Optimize Their Immune Response by Specifying the Site of Spacer Integration.

McGinn J, Marraffini LA.

Mol Cell. 2016 Nov 3;64(3):616-623. doi: 10.1016/j.molcel.2016.08.038. Epub 2016 Sep 8.

23.

The CRISPR-Cas system of Streptococcus pyogenes: function and applications.

Marraffini LA.

In: Ferretti JJ, Stevens DL, Fischetti VA, editors. Streptococcus pyogenes : Basic Biology to Clinical Manifestations [Internet]. Oklahoma City (OK): University of Oklahoma Health Sciences Center; 2016-.
2016 Apr 7.

24.

RNA. CRISPR goes retro.

Sontheimer EJ, Marraffini LA.

Science. 2016 Feb 26;351(6276):920-1. doi: 10.1126/science.aaf2851. No abstract available.

PMID:
26917756
25.

Degradation of Phage Transcripts by CRISPR-Associated RNases Enables Type III CRISPR-Cas Immunity.

Jiang W, Samai P, Marraffini LA.

Cell. 2016 Feb 11;164(4):710-21. doi: 10.1016/j.cell.2015.12.053. Epub 2016 Feb 4.

26.

Impact of Different Target Sequences on Type III CRISPR-Cas Immunity.

Maniv I, Jiang W, Bikard D, Marraffini LA.

J Bacteriol. 2016 Jan 11;198(6):941-50. doi: 10.1128/JB.00897-15.

27.

Resistance and tolerance to foreign elements by prokaryotic immune systems - curating the genome.

Goldberg GW, Marraffini LA.

Nat Rev Immunol. 2015 Nov;15(11):717-24. doi: 10.1038/nri3910. Review.

28.

CRISPR-Cas immunity in prokaryotes.

Marraffini LA.

Nature. 2015 Oct 1;526(7571):55-61. doi: 10.1038/nature15386. Review.

PMID:
26432244
29.

CRISPR-Cas: New Tools for Genetic Manipulations from Bacterial Immunity Systems.

Jiang W, Marraffini LA.

Annu Rev Microbiol. 2015;69:209-28. doi: 10.1146/annurev-micro-091014-104441. Epub 2015 Jul 22. Review.

PMID:
26209264
30.

Co-transcriptional DNA and RNA Cleavage during Type III CRISPR-Cas Immunity.

Samai P, Pyenson N, Jiang W, Goldberg GW, Hatoum-Aslan A, Marraffini LA.

Cell. 2015 May 21;161(5):1164-1174. doi: 10.1016/j.cell.2015.04.027. Epub 2015 May 7.

31.

Cas9 specifies functional viral targets during CRISPR-Cas adaptation.

Heler R, Samai P, Modell JW, Weiner C, Goldberg GW, Bikard D, Marraffini LA.

Nature. 2015 Mar 12;519(7542):199-202. doi: 10.1038/nature14245. Epub 2015 Feb 18.

32.

Exploiting CRISPR-Cas nucleases to produce sequence-specific antimicrobials.

Bikard D, Euler CW, Jiang W, Nussenzweig PM, Goldberg GW, Duportet X, Fischetti VA, Marraffini LA.

Nat Biotechnol. 2014 Nov;32(11):1146-50. doi: 10.1038/nbt.3043. Epub 2014 Oct 5.

33.

Conditional tolerance of temperate phages via transcription-dependent CRISPR-Cas targeting.

Goldberg GW, Jiang W, Bikard D, Marraffini LA.

Nature. 2014 Oct 30;514(7524):633-7. doi: 10.1038/nature13637. Epub 2014 Aug 31.

34.

Harnessing CRISPR-Cas9 immunity for genetic engineering.

Charpentier E, Marraffini LA.

Curr Opin Microbiol. 2014 Jun;19:114-119. doi: 10.1016/j.mib.2014.07.001. Epub 2014 Jul 19.

35.

Editorial overview: Novel technologies in microbiology: Recent advances in techniques in microbiology.

Charpentier E, Marraffini LA.

Curr Opin Microbiol. 2014 Jun;19:viii-x. doi: 10.1016/j.mib.2014.06.012. Epub 2014 Jul 10. No abstract available.

PMID:
25017933
36.

Adapting to new threats: the generation of memory by CRISPR-Cas immune systems.

Heler R, Marraffini LA, Bikard D.

Mol Microbiol. 2014 Jul;93(1):1-9. doi: 10.1111/mmi.12640. Epub 2014 Jun 4. Review.

37.

CRISPR-Cas systems: Prokaryotes upgrade to adaptive immunity.

Barrangou R, Marraffini LA.

Mol Cell. 2014 Apr 24;54(2):234-44. doi: 10.1016/j.molcel.2014.03.011. Review.

38.

Impact of CRISPR immunity on the emergence and virulence of bacterial pathogens.

Hatoum-Aslan A, Marraffini LA.

Curr Opin Microbiol. 2014 Feb;17:82-90. doi: 10.1016/j.mib.2013.12.001. Epub 2013 Dec 29. Review.

39.

CRISPR-Cas immunity against phages: its effects on the evolution and survival of bacterial pathogens.

Marraffini LA.

PLoS Pathog. 2013;9(12):e1003765. doi: 10.1371/journal.ppat.1003765. Epub 2013 Dec 12. No abstract available.

40.

Control of gene expression by CRISPR-Cas systems.

Bikard D, Marraffini LA.

F1000Prime Rep. 2013 Nov 1;5:47. doi: 10.12703/P5-47. eCollection 2013. Review.

41.

Genetic characterization of antiplasmid immunity through a type III-A CRISPR-Cas system.

Hatoum-Aslan A, Maniv I, Samai P, Marraffini LA.

J Bacteriol. 2014 Jan;196(2):310-7. doi: 10.1128/JB.01130-13. Epub 2013 Nov 1.

42.

Dealing with the evolutionary downside of CRISPR immunity: bacteria and beneficial plasmids.

Jiang W, Maniv I, Arain F, Wang Y, Levin BR, Marraffini LA.

PLoS Genet. 2013;9(9):e1003844. doi: 10.1371/journal.pgen.1003844. Epub 2013 Sep 26.

43.

A ruler protein in a complex for antiviral defense determines the length of small interfering CRISPR RNAs.

Hatoum-Aslan A, Samai P, Maniv I, Jiang W, Marraffini LA.

J Biol Chem. 2013 Sep 27;288(39):27888-97. doi: 10.1074/jbc.M113.499244. Epub 2013 Aug 9.

44.

DNA targeting specificity of RNA-guided Cas9 nucleases.

Hsu PD, Scott DA, Weinstein JA, Ran FA, Konermann S, Agarwala V, Li Y, Fine EJ, Wu X, Shalem O, Cradick TJ, Marraffini LA, Bao G, Zhang F.

Nat Biotechnol. 2013 Sep;31(9):827-32. doi: 10.1038/nbt.2647. Epub 2013 Jul 21.

45.

Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system.

Bikard D, Jiang W, Samai P, Hochschild A, Zhang F, Marraffini LA.

Nucleic Acids Res. 2013 Aug;41(15):7429-37. doi: 10.1093/nar/gkt520. Epub 2013 Jun 12.

46.

CRISPR decoys: competitive inhibitors of CRISPR immunity.

Maniv I, Hatoum-Aslan A, Marraffini LA.

RNA Biol. 2013 May;10(5):694-9. doi: 10.4161/rna.24287. Epub 2013 Apr 12.

47.

RNA-guided editing of bacterial genomes using CRISPR-Cas systems.

Jiang W, Bikard D, Cox D, Zhang F, Marraffini LA.

Nat Biotechnol. 2013 Mar;31(3):233-9. doi: 10.1038/nbt.2508. Epub 2013 Jan 29.

48.

Multiplex genome engineering using CRISPR/Cas systems.

Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, Zhang F.

Science. 2013 Feb 15;339(6121):819-23. doi: 10.1126/science.1231143. Epub 2013 Jan 3.

49.

CRISPR interference can prevent natural transformation and virulence acquisition during in vivo bacterial infection.

Bikard D, Hatoum-Aslan A, Mucida D, Marraffini LA.

Cell Host Microbe. 2012 Aug 16;12(2):177-86. doi: 10.1016/j.chom.2012.06.003.

50.

Mature clustered, regularly interspaced, short palindromic repeats RNA (crRNA) length is measured by a ruler mechanism anchored at the precursor processing site.

Hatoum-Aslan A, Maniv I, Marraffini LA.

Proc Natl Acad Sci U S A. 2011 Dec 27;108(52):21218-22. doi: 10.1073/pnas.1112832108. Epub 2011 Dec 12.

Supplemental Content

Loading ...
Support Center