Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 57

1.

Molecular mechanisms of CRISPR-Cas spacer acquisition.

McGinn J, Marraffini LA.

Nat Rev Microbiol. 2018 Aug 31. doi: 10.1038/s41579-018-0071-7. [Epub ahead of print] Review.

PMID:
30171202
2.

RNA Guide Complementarity Prevents Self-Targeting in Type VI CRISPR Systems.

Meeske AJ, Marraffini LA.

Mol Cell. 2018 Sep 6;71(5):791-801.e3. doi: 10.1016/j.molcel.2018.07.013. Epub 2018 Aug 16.

PMID:
30122537
3.

Viral Teamwork Pushes CRISPR to the Breaking Point.

Nussenzweig PM, Marraffini LA.

Cell. 2018 Aug 9;174(4):772-774. doi: 10.1016/j.cell.2018.07.025.

PMID:
30096306
4.

Enhanced Bacterial Immunity and Mammalian Genome Editing via RNA-Polymerase-Mediated Dislodging of Cas9 from Double-Strand DNA Breaks.

Clarke R, Heler R, MacDougall MS, Yeo NC, Chavez A, Regan M, Hanakahi L, Church GM, Marraffini LA, Merrill BJ.

Mol Cell. 2018 Jul 5;71(1):42-55.e8. doi: 10.1016/j.molcel.2018.06.005.

PMID:
29979968
5.

Incomplete prophage tolerance by type III-A CRISPR-Cas systems reduces the fitness of lysogenic hosts.

Goldberg GW, McMillan EA, Varble A, Modell JW, Samai P, Jiang W, Marraffini LA.

Nat Commun. 2018 Jan 4;9(1):61. doi: 10.1038/s41467-017-02557-2.

6.

Type III CRISPR-Cas systems: when DNA cleavage just isn't enough.

Pyenson NC, Marraffini LA.

Curr Opin Microbiol. 2017 Jun;37:150-154. doi: 10.1016/j.mib.2017.08.003. Epub 2017 Aug 31. Review.

PMID:
28865392
7.

Broad Targeting Specificity during Bacterial Type III CRISPR-Cas Immunity Constrains Viral Escape.

Pyenson NC, Gayvert K, Varble A, Elemento O, Marraffini LA.

Cell Host Microbe. 2017 Sep 13;22(3):343-353.e3. doi: 10.1016/j.chom.2017.07.016. Epub 2017 Aug 17.

8.

Type III CRISPR-Cas systems produce cyclic oligoadenylate second messengers.

Niewoehner O, Garcia-Doval C, Rostøl JT, Berk C, Schwede F, Bigler L, Hall J, Marraffini LA, Jinek M.

Nature. 2017 Aug 31;548(7669):543-548. doi: 10.1038/nature23467. Epub 2017 Jul 19.

PMID:
28722012
9.

CRISPR-Cas systems exploit viral DNA injection to establish and maintain adaptive immunity.

Modell JW, Jiang W, Marraffini LA.

Nature. 2017 Apr 6;544(7648):101-104. doi: 10.1038/nature21719. Epub 2017 Mar 29.

10.

Mutations in Cas9 Enhance the Rate of Acquisition of Viral Spacer Sequences during the CRISPR-Cas Immune Response.

Heler R, Wright AV, Vucelja M, Bikard D, Doudna JA, Marraffini LA.

Mol Cell. 2017 Jan 5;65(1):168-175. doi: 10.1016/j.molcel.2016.11.031. Epub 2016 Dec 22.

11.

Sensing danger.

Marraffini LA.

Proc Natl Acad Sci U S A. 2017 Jan 3;114(1):15-16. doi: 10.1073/pnas.1618747114. Epub 2016 Dec 20. No abstract available.

12.

CRISPR-Cas Systems Optimize Their Immune Response by Specifying the Site of Spacer Integration.

McGinn J, Marraffini LA.

Mol Cell. 2016 Nov 3;64(3):616-623. doi: 10.1016/j.molcel.2016.08.038. Epub 2016 Sep 8.

13.

The CRISPR-Cas system of Streptococcus pyogenes: function and applications.

Marraffini LA.

In: Ferretti JJ, Stevens DL, Fischetti VA, editors. Streptococcus pyogenes : Basic Biology to Clinical Manifestations [Internet]. Oklahoma City (OK): University of Oklahoma Health Sciences Center; 2016-.
2016 Apr 7.

14.

RNA. CRISPR goes retro.

Sontheimer EJ, Marraffini LA.

Science. 2016 Feb 26;351(6276):920-1. doi: 10.1126/science.aaf2851. No abstract available.

PMID:
26917756
15.

Degradation of Phage Transcripts by CRISPR-Associated RNases Enables Type III CRISPR-Cas Immunity.

Jiang W, Samai P, Marraffini LA.

Cell. 2016 Feb 11;164(4):710-21. doi: 10.1016/j.cell.2015.12.053. Epub 2016 Feb 4.

16.

Impact of Different Target Sequences on Type III CRISPR-Cas Immunity.

Maniv I, Jiang W, Bikard D, Marraffini LA.

J Bacteriol. 2016 Jan 11;198(6):941-50. doi: 10.1128/JB.00897-15.

17.

Resistance and tolerance to foreign elements by prokaryotic immune systems - curating the genome.

Goldberg GW, Marraffini LA.

Nat Rev Immunol. 2015 Nov;15(11):717-24. doi: 10.1038/nri3910. Review.

18.

CRISPR-Cas immunity in prokaryotes.

Marraffini LA.

Nature. 2015 Oct 1;526(7571):55-61. doi: 10.1038/nature15386. Review.

PMID:
26432244
19.

CRISPR-Cas: New Tools for Genetic Manipulations from Bacterial Immunity Systems.

Jiang W, Marraffini LA.

Annu Rev Microbiol. 2015;69:209-28. doi: 10.1146/annurev-micro-091014-104441. Epub 2015 Jul 22. Review.

PMID:
26209264
20.

Co-transcriptional DNA and RNA Cleavage during Type III CRISPR-Cas Immunity.

Samai P, Pyenson N, Jiang W, Goldberg GW, Hatoum-Aslan A, Marraffini LA.

Cell. 2015 May 21;161(5):1164-1174. doi: 10.1016/j.cell.2015.04.027. Epub 2015 May 7.

21.

Cas9 specifies functional viral targets during CRISPR-Cas adaptation.

Heler R, Samai P, Modell JW, Weiner C, Goldberg GW, Bikard D, Marraffini LA.

Nature. 2015 Mar 12;519(7542):199-202. doi: 10.1038/nature14245. Epub 2015 Feb 18.

22.

Exploiting CRISPR-Cas nucleases to produce sequence-specific antimicrobials.

Bikard D, Euler CW, Jiang W, Nussenzweig PM, Goldberg GW, Duportet X, Fischetti VA, Marraffini LA.

Nat Biotechnol. 2014 Nov;32(11):1146-50. doi: 10.1038/nbt.3043. Epub 2014 Oct 5.

23.

Conditional tolerance of temperate phages via transcription-dependent CRISPR-Cas targeting.

Goldberg GW, Jiang W, Bikard D, Marraffini LA.

Nature. 2014 Oct 30;514(7524):633-7. doi: 10.1038/nature13637. Epub 2014 Aug 31.

24.

Harnessing CRISPR-Cas9 immunity for genetic engineering.

Charpentier E, Marraffini LA.

Curr Opin Microbiol. 2014 Jun;19:114-119. doi: 10.1016/j.mib.2014.07.001. Epub 2014 Jul 19.

25.

Editorial overview: Novel technologies in microbiology: Recent advances in techniques in microbiology.

Charpentier E, Marraffini LA.

Curr Opin Microbiol. 2014 Jun;19:viii-x. doi: 10.1016/j.mib.2014.06.012. Epub 2014 Jul 10. No abstract available.

PMID:
25017933
26.

Adapting to new threats: the generation of memory by CRISPR-Cas immune systems.

Heler R, Marraffini LA, Bikard D.

Mol Microbiol. 2014 Jul;93(1):1-9. doi: 10.1111/mmi.12640. Epub 2014 Jun 4. Review.

27.

CRISPR-Cas systems: Prokaryotes upgrade to adaptive immunity.

Barrangou R, Marraffini LA.

Mol Cell. 2014 Apr 24;54(2):234-44. doi: 10.1016/j.molcel.2014.03.011. Review.

28.

Impact of CRISPR immunity on the emergence and virulence of bacterial pathogens.

Hatoum-Aslan A, Marraffini LA.

Curr Opin Microbiol. 2014 Feb;17:82-90. doi: 10.1016/j.mib.2013.12.001. Epub 2013 Dec 29. Review.

29.

CRISPR-Cas immunity against phages: its effects on the evolution and survival of bacterial pathogens.

Marraffini LA.

PLoS Pathog. 2013;9(12):e1003765. doi: 10.1371/journal.ppat.1003765. Epub 2013 Dec 12. No abstract available.

30.

Control of gene expression by CRISPR-Cas systems.

Bikard D, Marraffini LA.

F1000Prime Rep. 2013 Nov 1;5:47. doi: 10.12703/P5-47. eCollection 2013. Review.

31.

Genetic characterization of antiplasmid immunity through a type III-A CRISPR-Cas system.

Hatoum-Aslan A, Maniv I, Samai P, Marraffini LA.

J Bacteriol. 2014 Jan;196(2):310-7. doi: 10.1128/JB.01130-13. Epub 2013 Nov 1.

32.

Dealing with the evolutionary downside of CRISPR immunity: bacteria and beneficial plasmids.

Jiang W, Maniv I, Arain F, Wang Y, Levin BR, Marraffini LA.

PLoS Genet. 2013;9(9):e1003844. doi: 10.1371/journal.pgen.1003844. Epub 2013 Sep 26.

33.

A ruler protein in a complex for antiviral defense determines the length of small interfering CRISPR RNAs.

Hatoum-Aslan A, Samai P, Maniv I, Jiang W, Marraffini LA.

J Biol Chem. 2013 Sep 27;288(39):27888-97. doi: 10.1074/jbc.M113.499244. Epub 2013 Aug 9.

34.

DNA targeting specificity of RNA-guided Cas9 nucleases.

Hsu PD, Scott DA, Weinstein JA, Ran FA, Konermann S, Agarwala V, Li Y, Fine EJ, Wu X, Shalem O, Cradick TJ, Marraffini LA, Bao G, Zhang F.

Nat Biotechnol. 2013 Sep;31(9):827-32. doi: 10.1038/nbt.2647. Epub 2013 Jul 21.

35.

Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system.

Bikard D, Jiang W, Samai P, Hochschild A, Zhang F, Marraffini LA.

Nucleic Acids Res. 2013 Aug;41(15):7429-37. doi: 10.1093/nar/gkt520. Epub 2013 Jun 12.

36.

CRISPR decoys: competitive inhibitors of CRISPR immunity.

Maniv I, Hatoum-Aslan A, Marraffini LA.

RNA Biol. 2013 May;10(5):694-9. doi: 10.4161/rna.24287. Epub 2013 Apr 12.

37.

RNA-guided editing of bacterial genomes using CRISPR-Cas systems.

Jiang W, Bikard D, Cox D, Zhang F, Marraffini LA.

Nat Biotechnol. 2013 Mar;31(3):233-9. doi: 10.1038/nbt.2508. Epub 2013 Jan 29.

38.

Multiplex genome engineering using CRISPR/Cas systems.

Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, Zhang F.

Science. 2013 Feb 15;339(6121):819-23. doi: 10.1126/science.1231143. Epub 2013 Jan 3.

39.

CRISPR interference can prevent natural transformation and virulence acquisition during in vivo bacterial infection.

Bikard D, Hatoum-Aslan A, Mucida D, Marraffini LA.

Cell Host Microbe. 2012 Aug 16;12(2):177-86. doi: 10.1016/j.chom.2012.06.003.

40.

Mature clustered, regularly interspaced, short palindromic repeats RNA (crRNA) length is measured by a ruler mechanism anchored at the precursor processing site.

Hatoum-Aslan A, Maniv I, Marraffini LA.

Proc Natl Acad Sci U S A. 2011 Dec 27;108(52):21218-22. doi: 10.1073/pnas.1112832108. Epub 2011 Dec 12.

41.

Innate and adaptive immunity in bacteria: mechanisms of programmed genetic variation to fight bacteriophages.

Bikard D, Marraffini LA.

Curr Opin Immunol. 2012 Feb;24(1):15-20. doi: 10.1016/j.coi.2011.10.005. Epub 2011 Nov 11. Review.

PMID:
22079134
42.

Microbiology: slicer for DNA.

Sontheimer EJ, Marraffini LA.

Nature. 2010 Nov 4;468(7320):45-6. doi: 10.1038/468045a. No abstract available.

43.

Impact of CRIPSR immunity on the emergence of bacterial pathogens.

Marraffini LA.

Future Microbiol. 2010 May;5(5):693-5. doi: 10.2217/fmb.10.38. No abstract available.

44.

CRISPR interference: RNA-directed adaptive immunity in bacteria and archaea.

Marraffini LA, Sontheimer EJ.

Nat Rev Genet. 2010 Mar;11(3):181-90. doi: 10.1038/nrg2749. Review.

45.

Self versus non-self discrimination during CRISPR RNA-directed immunity.

Marraffini LA, Sontheimer EJ.

Nature. 2010 Jan 28;463(7280):568-71. doi: 10.1038/nature08703. Epub 2010 Jan 13.

46.

Invasive DNA, chopped and in the CRISPR.

Marraffini LA, Sontheimer EJ.

Structure. 2009 Jun 10;17(6):786-8. doi: 10.1016/j.str.2009.05.002.

47.

CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA.

Marraffini LA, Sontheimer EJ.

Science. 2008 Dec 19;322(5909):1843-5. doi: 10.1126/science.1165771.

48.

Amide bonds assemble pili on the surface of bacilli.

Budzik JM, Marraffini LA, Souda P, Whitelegge JP, Faull KF, Schneewind O.

Proc Natl Acad Sci U S A. 2008 Jul 22;105(29):10215-20. doi: 10.1073/pnas.0803565105. Epub 2008 Jul 11.

49.

Assembly of pili on the surface of Bacillus cereus vegetative cells.

Budzik JM, Marraffini LA, Schneewind O.

Mol Microbiol. 2007 Oct;66(2):495-510.

50.

Sortase C-mediated anchoring of BasI to the cell wall envelope of Bacillus anthracis.

Marraffini LA, Schneewind O.

J Bacteriol. 2007 Sep;189(17):6425-36. Epub 2007 Jun 22.

Supplemental Content

Loading ...
Support Center