Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 30

1.

ac/dc Magnetic Fields for Enhanced Translation of Colloidal Microwheels.

Disharoon D, Neeves KB, Marr DWM.

Langmuir. 2019 Mar 5;35(9):3455-3460. doi: 10.1021/acs.langmuir.8b04084. Epub 2019 Feb 19.

PMID:
30726100
2.

Enhanced Fibrinolysis with Magnetically Powered Colloidal Microwheels.

Tasci TO, Disharoon D, Schoeman RM, Rana K, Herson PS, Marr DWM, Neeves KB.

Small. 2017 Sep;13(36). doi: 10.1002/smll.201700954. Epub 2017 Jul 18.

PMID:
28719063
3.

Magnetic Microlassos for Reversible Cargo Capture, Transport, and Release.

Yang T, Tasci TO, Neeves KB, Wu N, Marr DWM.

Langmuir. 2017 Jun 13;33(23):5932-5937. doi: 10.1021/acs.langmuir.7b00357. Epub 2017 Mar 27.

PMID:
28318267
4.

Non reciprocal skewed rolling of a colloidal wheel due to induced chirality.

Maier FJ, Lachner T, Vilfan A, Tasci TO, Neeves KB, Marr DW, Fischer TM.

Soft Matter. 2016 Nov 23;12(46):9314-9320.

PMID:
27824198
5.

Characterization of La1-xSrxMnO3 perovskite catalysts for hydrogen peroxide reduction.

Yunphuttha C, Porntheeraphat S, Wongchaisuwat A, Tangbunsuk S, Marr DW, Viravathana P.

Phys Chem Chem Phys. 2016 Jun 22;18(25):16786-93. doi: 10.1039/c6cp02338j.

PMID:
27271119
6.

FACS-style detection for real-time cell viscoelastic cytometry.

Kasukurti A, Eggleton CD, Desai SA, Marr DW.

RSC Adv. 2015;5(128):105636-105642. Epub 2015 Dec 2.

7.

Surface-enabled propulsion and control of colloidal microwheels.

Tasci TO, Herson PS, Neeves KB, Marr DW.

Nat Commun. 2016 Jan 4;7:10225. doi: 10.1038/ncomms10225.

8.

High-throughput linear optical stretcher for mechanical characterization of blood cells.

Roth KB, Neeves KB, Squier J, Marr DW.

Cytometry A. 2016 Apr;89(4):391-7. doi: 10.1002/cyto.a.22794. Epub 2015 Nov 13.

9.

Imaging of a linear diode bar for an optical cell stretcher.

Roth KB, Neeves KB, Squier J, Marr DW.

Biomed Opt Express. 2015 Feb 11;6(3):807-14. doi: 10.1364/BOE.6.000807. eCollection 2015 Mar 1.

10.

A simple microfluidic dispenser for single-microparticle and cell samples.

Kasukurti A, Eggleton CD, Desai SA, Disharoon DI, Marr DW.

Lab Chip. 2014 Dec 21;14(24):4673-9. doi: 10.1039/c4lc00863d. Epub 2014 Oct 15.

11.

Viscoelasticity as a biomarker for high-throughput flow cytometry.

Sawetzki T, Eggleton CD, Desai SA, Marr DW.

Biophys J. 2013 Nov 19;105(10):2281-8. doi: 10.1016/j.bpj.2013.10.003.

12.

Measuring cell mechanics by optical alignment compression cytometry.

Roth KB, Eggleton CD, Neeves KB, Marr DW.

Lab Chip. 2013 Apr 21;13(8):1571-7. doi: 10.1039/c3lc41253a.

13.

Cell elongation via intrinsic antipodal stretching forces.

Sawetzki T, Eggleton CD, Marr DW.

Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Dec;86(6 Pt 1):061901. Epub 2012 Dec 5.

14.

Erythrocyte deformation in high-throughput optical stretchers.

Sraj I, Szatmary AC, Desai SA, Marr DW, Eggleton CD.

Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Apr;85(4 Pt 1):041923. Epub 2012 Apr 30.

15.

Single-cell isolation using a DVD optical pickup.

Kasukurti A, Potcoava M, Desai SA, Eggleton C, Marr DW.

Opt Express. 2011 May 23;19(11):10377-86. doi: 10.1364/OE.19.010377.

16.

Linear diode laser bar optical stretchers for cell deformation.

Sraj I, Marr DW, Eggleton CD.

Biomed Opt Express. 2010 Aug 5;1(2):482-488.

17.

Cell deformation cytometry using diode-bar optical stretchers.

Sraj I, Eggleton CD, Jimenez R, Hoover E, Squier J, Chichester J, Marr DW.

J Biomed Opt. 2010 Jul-Aug;15(4):047010. doi: 10.1117/1.3470124.

18.

Dynamic ray tracing for modeling optical cell manipulation.

Sraj I, Szatmary AC, Marr DW, Eggleton CD.

Opt Express. 2010 Aug 2;18(16):16702-14. doi: 10.1364/OE.18.016702.

19.

Particle size limits when using optical trapping and deflection of particles for sorting using diode laser bars.

Applegate RW Jr, Marr DW, Squier J, Graves SW.

Opt Express. 2009 Sep 14;17(19):16731-8. doi: 10.1364/OE.17.016731.

PMID:
19770888
20.

Coherent anti-Stokes Raman scattering microscopy for quantitative characterization of mixing and flow in microfluidics.

Schafer D, Müller M, Bonn M, Marr DW, van Maarseveen J, Squier J.

Opt Lett. 2009 Jan 15;34(2):211-3.

PMID:
19148258
21.

In situ assembly of linked geometrically coupled microdevices.

Sawetzki T, Rahmouni S, Bechinger C, Marr DW.

Proc Natl Acad Sci U S A. 2008 Dec 23;105(51):20141-5. doi: 10.1073/pnas.0808808105. Epub 2008 Dec 12.

22.

Three-dimensional chemical concentration maps in a microfluidic device using two-photon absorption fluorescence imaging.

Schafer D, Gibson EA, Amir W, Erikson R, Lawrence J, Vestad T, Squier J, Jimenez R, Marr DW.

Opt Lett. 2007 Sep 1;32(17):2568-70.

PMID:
17767307
23.
24.

Microfluidic sorting system based on optical waveguide integration and diode laser bar trapping.

Applegate RW Jr, Squier J, Vestad T, Oakey J, Marr DW, Bado P, Dugan MA, Said AA.

Lab Chip. 2006 Mar;6(3):422-6. Epub 2006 Jan 20.

PMID:
16511626
25.

Synthesis of colloidal aluminosilicate for light-scattering investigations.

Viravathana P, Marr DW.

J Colloid Interface Sci. 2003 Sep 1;265(1):15-22.

PMID:
12927158
26.

Laminar-flow-based separations at the microscale.

Oakey J, Allely J, Marr DW.

Biotechnol Prog. 2002 Nov-Dec;18(6):1439-42.

PMID:
12467482
27.

Microfluidic control using colloidal devices.

Terray A, Oakey J, Marr DW.

Science. 2002 Jun 7;296(5574):1841-4.

28.

Optical Trapping of Titania/Silica Core-Shell Colloidal Particles.

Viravathana P, Marr DW.

J Colloid Interface Sci. 2000 Jan 15;221(2):301-307.

PMID:
10631034
29.

Orientational dependence of the interfacial tension in the adhesive-sphere system.

Marr DW, Gast AP.

Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1995 Oct;52(4):4058-4062. No abstract available.

PMID:
9963878
30.

Planar density-functional approach to the solid-fluid interface of simple liquids.

Marr DW, Gast AP.

Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1993 Feb;47(2):1212-1221. No abstract available.

PMID:
9960124

Supplemental Content

Support Center