Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 234

1.

Substrate selectivity in starch polysaccharide monooxygenases.

Vu VV, Hangasky JA, Detomasi TC, Henry SJW, Ngo ST, Span EA, Marletta MA.

J Biol Chem. 2019 Jun 24. pii: jbc.RA119.009509. doi: 10.1074/jbc.RA119.009509. [Epub ahead of print]

2.

Characterization of a Carbon Monoxide-Activated Soluble Guanylate Cyclase from Chlamydomonas reinhardtii.

Horst BG, Stewart EM, Nazarian AA, Marletta MA.

Biochemistry. 2019 Apr 30;58(17):2250-2259. doi: 10.1021/acs.biochem.9b00190. Epub 2019 Apr 17.

PMID:
30946781
3.

A Dual-H-NOX Signaling System in Saccharophagus degradans.

Guo Y, Cooper MM, Bromberg R, Marletta MA.

Biochemistry. 2018 Nov 27;57(47):6570-6580. doi: 10.1021/acs.biochem.8b01058. Epub 2018 Nov 13.

PMID:
30398342
4.

Structural Insight into H-NOX Gas Sensing and Cognate Signaling Protein Regulation.

Guo Y, Marletta MA.

Chembiochem. 2019 Jan 2;20(1):7-19. doi: 10.1002/cbic.201800478. Epub 2018 Nov 8. Review.

PMID:
30320963
5.

Native Alanine Substitution in the Glycine Hinge Modulates Conformational Flexibility of Heme Nitric Oxide/Oxygen (H-NOX) Sensing Proteins.

Hespen CW, Bruegger JJ, Guo Y, Marletta MA.

ACS Chem Biol. 2018 Jun 15;13(6):1631-1639. doi: 10.1021/acschembio.8b00248. Epub 2018 May 29.

PMID:
29757599
6.

Physiological activation and deactivation of soluble guanylate cyclase.

Horst BG, Marletta MA.

Nitric Oxide. 2018 Jul 1;77:65-74. doi: 10.1016/j.niox.2018.04.011. Epub 2018 Apr 25. Review.

PMID:
29704567
7.

Reactivity of O2 versus H2O2 with polysaccharide monooxygenases.

Hangasky JA, Iavarone AT, Marletta MA.

Proc Natl Acad Sci U S A. 2018 May 8;115(19):4915-4920. doi: 10.1073/pnas.1801153115. Epub 2018 Apr 23.

8.

A Random-Sequential Kinetic Mechanism for Polysaccharide Monooxygenases.

Hangasky JA, Marletta MA.

Biochemistry. 2018 Jun 5;57(22):3191-3199. doi: 10.1021/acs.biochem.8b00129. Epub 2018 Apr 27.

PMID:
29683313
9.

Comparative and integrative metabolomics reveal that S-nitrosation inhibits physiologically relevant metabolic enzymes.

Bruegger JJ, Smith BC, Wynia-Smith SL, Marletta MA.

J Biol Chem. 2018 Apr 27;293(17):6282-6296. doi: 10.1074/jbc.M117.817700. Epub 2018 Feb 26.

10.

Mapping the H-NOX/HK Binding Interface in Vibrio cholerae by Hydrogen/Deuterium Exchange Mass Spectrometry.

Guo Y, Iavarone AT, Cooper MM, Marletta MA.

Biochemistry. 2018 Mar 20;57(11):1779-1789. doi: 10.1021/acs.biochem.8b00027. Epub 2018 Feb 27.

PMID:
29457883
11.

Regulation of nitric oxide signaling by formation of a distal receptor-ligand complex.

Guo Y, Suess DLM, Herzik MA Jr, Iavarone AT, Britt RD, Marletta MA.

Nat Chem Biol. 2017 Dec;13(12):1216-1221. doi: 10.1038/nchembio.2488. Epub 2017 Oct 2.

12.

Physiological and Molecular Understanding of Bacterial Polysaccharide Monooxygenases.

Agostoni M, Hangasky JA, Marletta MA.

Microbiol Mol Biol Rev. 2017 Jun 28;81(3). pii: e00015-17. doi: 10.1128/MMBR.00015-17. Print 2017 Sep. Review.

13.

The Role of the Secondary Coordination Sphere in a Fungal Polysaccharide Monooxygenase.

Span EA, Suess DLM, Deller MC, Britt RD, Marletta MA.

ACS Chem Biol. 2017 Apr 21;12(4):1095-1103. doi: 10.1021/acschembio.7b00016. Epub 2017 Mar 3.

14.

Nitric Oxide-Induced Conformational Changes Govern H-NOX and Histidine Kinase Interaction and Regulation in Shewanella oneidensis.

Rao M, Herzik MA Jr, Iavarone AT, Marletta MA.

Biochemistry. 2017 Mar 7;56(9):1274-1284. doi: 10.1021/acs.biochem.6b01133. Epub 2017 Feb 21.

PMID:
28170222
15.

Structural and Functional Evidence Indicates Selective Oxygen Signaling in Caldanaerobacter subterraneus H-NOX.

Hespen CW, Bruegger JJ, Phillips-Piro CM, Marletta MA.

ACS Chem Biol. 2016 Aug 19;11(8):2337-46. doi: 10.1021/acschembio.6b00431. Epub 2016 Jun 30.

PMID:
27328180
16.

Chemoproteomic Strategy to Quantitatively Monitor Transnitrosation Uncovers Functionally Relevant S-Nitrosation Sites on Cathepsin D and HADH2.

Zhou Y, Wynia-Smith SL, Couvertier SM, Kalous KS, Marletta MA, Smith BC, Weerapana E.

Cell Chem Biol. 2016 Jun 23;23(6):727-37. doi: 10.1016/j.chembiol.2016.05.008. Epub 2016 Jun 9.

17.

Starch-degrading polysaccharide monooxygenases.

Vu VV, Marletta MA.

Cell Mol Life Sci. 2016 Jul;73(14):2809-19. doi: 10.1007/s00018-016-2251-9. Epub 2016 May 12. Review.

PMID:
27170366
18.

The framework of polysaccharide monooxygenase structure and chemistry.

Span EA, Marletta MA.

Curr Opin Struct Biol. 2015 Dec;35:93-9. doi: 10.1016/j.sbi.2015.10.002. Epub 2015 Nov 23. Review.

PMID:
26615470
19.

Nitric Oxide Mediates Biofilm Formation and Symbiosis in Silicibacter sp. Strain TrichCH4B.

Rao M, Smith BC, Marletta MA.

MBio. 2015 May 5;6(3):e00206-15. doi: 10.1128/mBio.00206-15.

20.

The Influence of Nitric Oxide on Soluble Guanylate Cyclase Regulation by Nucleotides: ROLE OF THE PSEUDOSYMMETRIC SITE.

Sürmeli NB, Müskens FM, Marletta MA.

J Biol Chem. 2015 Jun 19;290(25):15570-80. doi: 10.1074/jbc.M115.641431. Epub 2015 Apr 23.

21.

Cellulose degradation by polysaccharide monooxygenases.

Beeson WT, Vu VV, Span EA, Phillips CM, Marletta MA.

Annu Rev Biochem. 2015;84:923-46. doi: 10.1146/annurev-biochem-060614-034439. Epub 2015 Mar 12. Review.

PMID:
25784051
22.

α1-A680T variant in GUCY1A3 as a candidate conferring protection from pulmonary hypertension among Kyrgyz highlanders.

Wilkins MR, Aldashev AA, Wharton J, Rhodes CJ, Vandrovcova J, Kasperaviciute D, Bhosle SG, Mueller M, Geschka S, Rison S, Kojonazarov B, Morrell NW, Neidhardt I, Surmeli NB, Aitman TJ, Stasch JP, Behrends S, Marletta MA.

Circ Cardiovasc Genet. 2014 Dec;7(6):920-9. doi: 10.1161/CIRCGENETICS.114.000763. Epub 2014 Nov 4. Erratum in: Circ Cardiovasc Genet. 2015 Feb;8(1):244. Surmeli, Nur Basek [corrected to Surmeli, Nur Basak]. Circ Cardiovasc Genet. 2015 Feb;8(1):244.

23.

Structural insights into the role of iron-histidine bond cleavage in nitric oxide-induced activation of H-NOX gas sensor proteins.

Herzik MA Jr, Jonnalagadda R, Kuriyan J, Marletta MA.

Proc Natl Acad Sci U S A. 2014 Oct 7;111(40):E4156-64. doi: 10.1073/pnas.1416936111. Epub 2014 Sep 24.

24.

A family of starch-active polysaccharide monooxygenases.

Vu VV, Beeson WT, Span EA, Farquhar ER, Marletta MA.

Proc Natl Acad Sci U S A. 2014 Sep 23;111(38):13822-7. doi: 10.1073/pnas.1408090111. Epub 2014 Sep 8.

25.

Molecular architecture of mammalian nitric oxide synthases.

Campbell MG, Smith BC, Potter CS, Carragher B, Marletta MA.

Proc Natl Acad Sci U S A. 2014 Sep 2;111(35):E3614-23. doi: 10.1073/pnas.1413763111. Epub 2014 Aug 14.

26.

Nitric oxide-induced conformational changes in soluble guanylate cyclase.

Underbakke ES, Iavarone AT, Chalmers MJ, Pascal BD, Novick S, Griffin PR, Marletta MA.

Structure. 2014 Apr 8;22(4):602-11. doi: 10.1016/j.str.2014.01.008. Epub 2014 Feb 20.

27.

Single-particle EM reveals the higher-order domain architecture of soluble guanylate cyclase.

Campbell MG, Underbakke ES, Potter CS, Carragher B, Marletta MA.

Proc Natl Acad Sci U S A. 2014 Feb 25;111(8):2960-5. doi: 10.1073/pnas.1400711111. Epub 2014 Feb 10.

28.

Direct meso-alkynylation of metalloporphyrins through gold catalysis for hemoprotein engineering.

Nierth A, Marletta MA.

Angew Chem Int Ed Engl. 2014 Mar 3;53(10):2611-4. doi: 10.1002/anie.201310145. Epub 2014 Jan 30.

PMID:
24481709
29.

Determinants of regioselective hydroxylation in the fungal polysaccharide monooxygenases.

Vu VV, Beeson WT, Phillips CM, Cate JH, Marletta MA.

J Am Chem Soc. 2014 Jan 15;136(2):562-5. doi: 10.1021/ja409384b. Epub 2013 Dec 26.

PMID:
24350607
30.

Phosphorylation-dependent derepression by the response regulator HnoC in the Shewanella oneidensis nitric oxide signaling network.

Plate L, Marletta MA.

Proc Natl Acad Sci U S A. 2013 Nov 26;110(48):E4648-57. doi: 10.1073/pnas.1318128110. Epub 2013 Nov 11.

31.

Nitric oxide-sensing H-NOX proteins govern bacterial communal behavior.

Plate L, Marletta MA.

Trends Biochem Sci. 2013 Nov;38(11):566-75. doi: 10.1016/j.tibs.2013.08.008. Epub 2013 Oct 7. Review.

32.

Nitric oxide synthase domain interfaces regulate electron transfer and calmodulin activation.

Smith BC, Underbakke ES, Kulp DW, Schief WR, Marletta MA.

Proc Natl Acad Sci U S A. 2013 Sep 17;110(38):E3577-86. doi: 10.1073/pnas.1313331110. Epub 2013 Sep 3.

33.

Porphyrin π-stacking in a heme protein scaffold tunes gas ligand affinity.

Weinert EE, Phillips-Piro CM, Marletta MA.

J Inorg Biochem. 2013 Oct;127:7-12. doi: 10.1016/j.jinorgbio.2013.06.004. Epub 2013 Jun 15.

34.

Toward 'omic scale metabolite profiling: a dual separation-mass spectrometry approach for coverage of lipid and central carbon metabolism.

Ivanisevic J, Zhu ZJ, Plate L, Tautenhahn R, Chen S, O'Brien PJ, Johnson CH, Marletta MA, Patti GJ, Siuzdak G.

Anal Chem. 2013 Jul 16;85(14):6876-84. doi: 10.1021/ac401140h. Epub 2013 Jul 3.

35.

Higher-order interactions bridge the nitric oxide receptor and catalytic domains of soluble guanylate cyclase.

Underbakke ES, Iavarone AT, Marletta MA.

Proc Natl Acad Sci U S A. 2013 Apr 23;110(17):6777-82. doi: 10.1073/pnas.1301934110. Epub 2013 Apr 9.

36.

An Escherichia coli expression-based approach for porphyrin substitution in heme proteins.

Winter MB, Woodward JJ, Marletta MA.

Methods Mol Biol. 2013;987:95-106. doi: 10.1007/978-1-62703-321-3_8.

PMID:
23475670
37.

Porphyrin-substituted H-NOX proteins as high-relaxivity MRI contrast agents.

Winter MB, Klemm PJ, Phillips-Piro CM, Raymond KN, Marletta MA.

Inorg Chem. 2013 Mar 4;52(5):2277-9. doi: 10.1021/ic302685h. Epub 2013 Feb 8.

38.

Mechanisms of S-nitrosothiol formation and selectivity in nitric oxide signaling.

Smith BC, Marletta MA.

Curr Opin Chem Biol. 2012 Dec;16(5-6):498-506. doi: 10.1016/j.cbpa.2012.10.016. Epub 2012 Nov 3. Review.

39.

Heme-assisted S-nitrosation desensitizes ferric soluble guanylate cyclase to nitric oxide.

Fernhoff NB, Derbyshire ER, Underbakke ES, Marletta MA.

J Biol Chem. 2012 Dec 14;287(51):43053-62. doi: 10.1074/jbc.M112.393892. Epub 2012 Oct 23.

40.

Conformationally distinct five-coordinate heme-NO complexes of soluble guanylate cyclase elucidated by multifrequency electron paramagnetic resonance (EPR).

Gunn A, Derbyshire ER, Marletta MA, Britt RD.

Biochemistry. 2012 Oct 23;51(42):8384-90. doi: 10.1021/bi300831m. Epub 2012 Oct 9.

41.

Structural basis for substrate targeting and catalysis by fungal polysaccharide monooxygenases.

Li X, Beeson WT 4th, Phillips CM, Marletta MA, Cate JH.

Structure. 2012 Jun 6;20(6):1051-61. doi: 10.1016/j.str.2012.04.002. Epub 2012 May 10.

42.

Nitric oxide modulates bacterial biofilm formation through a multicomponent cyclic-di-GMP signaling network.

Plate L, Marletta MA.

Mol Cell. 2012 May 25;46(4):449-60. doi: 10.1016/j.molcel.2012.03.023. Epub 2012 Apr 26.

43.

Insight into the rescue of oxidized soluble guanylate cyclase by the activator cinaciguat.

Surmeli NB, Marletta MA.

Chembiochem. 2012 May 7;13(7):977-81. doi: 10.1002/cbic.201100809. Epub 2012 Mar 30.

44.

Structure and regulation of soluble guanylate cyclase.

Derbyshire ER, Marletta MA.

Annu Rev Biochem. 2012;81:533-59. doi: 10.1146/annurev-biochem-050410-100030. Epub 2012 Feb 9. Review.

PMID:
22404633
45.

Mechanism and kinetics of inducible nitric oxide synthase auto-S-nitrosation and inactivation.

Smith BC, Fernhoff NB, Marletta MA.

Biochemistry. 2012 Feb 7;51(5):1028-40. doi: 10.1021/bi201818c. Epub 2012 Jan 24.

46.

Oxidative cleavage of cellulose by fungal copper-dependent polysaccharide monooxygenases.

Beeson WT, Phillips CM, Cate JH, Marletta MA.

J Am Chem Soc. 2012 Jan 18;134(2):890-2. doi: 10.1021/ja210657t. Epub 2011 Dec 28.

PMID:
22188218
47.

Cellobiose dehydrogenase and a copper-dependent polysaccharide monooxygenase potentiate cellulose degradation by Neurospora crassa.

Phillips CM, Beeson WT, Cate JH, Marletta MA.

ACS Chem Biol. 2011 Dec 16;6(12):1399-406. doi: 10.1021/cb200351y. Epub 2011 Oct 25.

PMID:
22004347
48.

Tunnels modulate ligand flux in a heme nitric oxide/oxygen binding (H-NOX) domain.

Winter MB, Herzik MA Jr, Kuriyan J, Marletta MA.

Proc Natl Acad Sci U S A. 2011 Oct 25;108(43):E881-9. doi: 10.1073/pnas.1114038108. Epub 2011 Oct 12.

49.

Site-specific and redox-controlled S-nitrosation of thioredoxin.

Barglow KT, Knutson CG, Wishnok JS, Tannenbaum SR, Marletta MA.

Proc Natl Acad Sci U S A. 2011 Aug 30;108(35):E600-6. doi: 10.1073/pnas.1110736108. Epub 2011 Aug 17.

50.

Quantitative proteomic approach for cellulose degradation by Neurospora crassa.

Phillips CM, Iavarone AT, Marletta MA.

J Proteome Res. 2011 Sep 2;10(9):4177-85. doi: 10.1021/pr200329b. Epub 2011 Aug 1.

PMID:
21744778

Supplemental Content

Loading ...
Support Center