Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 28

1.

NEDD9 targets COL3A1 to promote endothelial fibrosis and pulmonary arterial hypertension.

Samokhin AO, Stephens T, Wertheim BM, Wang RS, Vargas SO, Yung LM, Cao M, Brown M, Arons E, Dieffenbach PB, Fewell JG, Matar M, Bowman FP, Haley KJ, Alba GA, Marino SM, Kumar R, Rosas IO, Waxman AB, Oldham WM, Khanna D, Graham BB, Seo S, Gladyshev VN, Yu PB, Fredenburgh LE, Loscalzo J, Leopold JA, Maron BA.

Sci Transl Med. 2018 Jun 13;10(445). pii: eaap7294. doi: 10.1126/scitranslmed.aap7294.

2.

Cpipe: a comprehensive computational platform for sequence and structure-based analyses of Cysteine residues.

Soylu I, Marino SM.

Bioinformatics. 2017 Aug 1;33(15):2395-2396. doi: 10.1093/bioinformatics/btx181.

PMID:
28369166
3.

Cy-preds: An algorithm and a web service for the analysis and prediction of cysteine reactivity.

Soylu İ, Marino SM.

Proteins. 2016 Feb;84(2):278-91. doi: 10.1002/prot.24978.

PMID:
26685111
4.

Site-Specific Proteomic Mapping Identifies Selectively Modified Regulatory Cysteine Residues in Functionally Distinct Protein Networks.

Gould NS, Evans P, Martínez-Acedo P, Marino SM, Gladyshev VN, Carroll KS, Ischiropoulos H.

Chem Biol. 2015 Jul 23;22(7):965-75. doi: 10.1016/j.chembiol.2015.06.010. Epub 2015 Jul 9.

5.

Mechanism-based proteomic screening identifies targets of thioredoxin-like proteins.

Nakao LS, Everley RA, Marino SM, Lo SM, de Souza LE, Gygi SP, Gladyshev VN.

J Biol Chem. 2015 Feb 27;290(9):5685-95. doi: 10.1074/jbc.M114.597245. Epub 2015 Jan 5.

6.

Selenoprotein S is involved in maintenance and transport of multiprotein complexes.

Turanov AA, Shchedrina VA, Everley RA, Lobanov AV, Yim SH, Marino SM, Gygi SP, Hatfield DL, Gladyshev VN.

Biochem J. 2014 Sep 15;462(3):555-65. doi: 10.1042/BJ20140076.

7.

Protein flexibility and cysteine reactivity: influence of mobility on the H-bond network and effects on pKa prediction.

Marino SM.

Protein J. 2014 Aug;33(4):323-36. doi: 10.1007/s10930-014-9564-z.

PMID:
24809821
8.

Selenocysteine in thiol/disulfide-like exchange reactions.

Hondal RJ, Marino SM, Gladyshev VN.

Antioxid Redox Signal. 2013 May 1;18(13):1675-89. doi: 10.1089/ars.2012.5013. Epub 2012 Dec 16. Review.

9.

Methionine sulfoxide reductases preferentially reduce unfolded oxidized proteins and protect cells from oxidative protein unfolding.

Tarrago L, Kaya A, Weerapana E, Marino SM, Gladyshev VN.

J Biol Chem. 2012 Jul 13;287(29):24448-59. doi: 10.1074/jbc.M112.374520. Epub 2012 May 24.

10.

Analysis and functional prediction of reactive cysteine residues.

Marino SM, Gladyshev VN.

J Biol Chem. 2012 Feb 10;287(7):4419-25. doi: 10.1074/jbc.R111.275578. Epub 2011 Dec 6. Review.

11.

Genome sequencing reveals insights into physiology and longevity of the naked mole rat.

Kim EB, Fang X, Fushan AA, Huang Z, Lobanov AV, Han L, Marino SM, Sun X, Turanov AA, Yang P, Yim SH, Zhao X, Kasaikina MV, Stoletzki N, Peng C, Polak P, Xiong Z, Kiezun A, Zhu Y, Chen Y, Kryukov GV, Zhang Q, Peshkin L, Yang L, Bronson RT, Buffenstein R, Wang B, Han C, Li Q, Chen L, Zhao W, Sunyaev SR, Park TJ, Zhang G, Wang J, Gladyshev VN.

Nature. 2011 Oct 12;479(7372):223-7. doi: 10.1038/nature10533.

12.

Thioredoxin 1-mediated post-translational modifications: reduction, transnitrosylation, denitrosylation, and related proteomics methodologies.

Wu C, Parrott AM, Fu C, Liu T, Marino SM, Gladyshev VN, Jain MR, Baykal AT, Li Q, Oka S, Sadoshima J, Beuve A, Simmons WJ, Li H.

Antioxid Redox Signal. 2011 Nov 1;15(9):2565-604. doi: 10.1089/ars.2010.3831. Epub 2011 Jun 8. Review.

13.

A 4-selenocysteine, 2-selenocysteine insertion sequence (SECIS) element methionine sulfoxide reductase from Metridium senile reveals a non-catalytic function of selenocysteines.

Lee BC, Lobanov AV, Marino SM, Kaya A, Seravalli J, Hatfield DL, Gladyshev VN.

J Biol Chem. 2011 May 27;286(21):18747-55. doi: 10.1074/jbc.M111.229807. Epub 2011 Mar 10.

14.

Proteomics: mapping reactive cysteines.

Marino SM, Gladyshev VN.

Nat Chem Biol. 2011 Feb;7(2):72-3. doi: 10.1038/nchembio.513. No abstract available.

PMID:
21245858
15.

Linked thioredoxin-glutathione systems in platyhelminth parasites: alternative pathways for glutathione reduction and deglutathionylation.

Bonilla M, Denicola A, Marino SM, Gladyshev VN, Salinas G.

J Biol Chem. 2011 Feb 18;286(7):4959-67. doi: 10.1074/jbc.M110.170761. Epub 2010 Nov 4.

16.

Cysteine function governs its conservation and degeneration and restricts its utilization on protein surfaces.

Marino SM, Gladyshev VN.

J Mol Biol. 2010 Dec 17;404(5):902-16. doi: 10.1016/j.jmb.2010.09.027. Epub 2010 Oct 13.

17.

Investigation of Streptomyces antibioticus tyrosinase reactivity toward chlorophenols.

Marino SM, Fogal S, Bisaglia M, Moro S, Scartabelli G, De Gioia L, Spada A, Monzani E, Casella L, Mammi S, Bubacco L.

Arch Biochem Biophys. 2011 Jan 1;505(1):67-74. doi: 10.1016/j.abb.2010.09.019. Epub 2010 Sep 26.

PMID:
20875779
18.

Redox biology: computational approaches to the investigation of functional cysteine residues.

Marino SM, Gladyshev VN.

Antioxid Redox Signal. 2011 Jul 1;15(1):135-46. doi: 10.1089/ars.2010.3561. Epub 2011 Apr 14. Review.

19.

Characterization of surface-exposed reactive cysteine residues in Saccharomyces cerevisiae.

Marino SM, Li Y, Fomenko DE, Agisheva N, Cerny RL, Gladyshev VN.

Biochemistry. 2010 Sep 7;49(35):7709-21. doi: 10.1021/bi100677a.

20.

Insights into function, catalytic mechanism, and fold evolution of selenoprotein methionine sulfoxide reductase B1 through structural analysis.

Aachmann FL, Sal LS, Kim HY, Marino SM, Gladyshev VN, Dikiy A.

J Biol Chem. 2010 Oct 22;285(43):33315-23. doi: 10.1074/jbc.M110.132308. Epub 2010 Jul 5.

21.

Mammalian thioredoxin reductase 1: roles in redox homoeostasis and characterization of cellular targets.

Turanov AA, Kehr S, Marino SM, Yoo MH, Carlson BA, Hatfield DL, Gladyshev VN.

Biochem J. 2010 Sep 1;430(2):285-93. doi: 10.1042/BJ20091378.

22.

Structural analysis of cysteine S-nitrosylation: a modified acid-based motif and the emerging role of trans-nitrosylation.

Marino SM, Gladyshev VN.

J Mol Biol. 2010 Jan 29;395(4):844-59. doi: 10.1016/j.jmb.2009.10.042. Epub 2009 Oct 23.

23.

A structure-based approach for detection of thiol oxidoreductases and their catalytic redox-active cysteine residues.

Marino SM, Gladyshev VN.

PLoS Comput Biol. 2009 May;5(5):e1000383. doi: 10.1371/journal.pcbi.1000383. Epub 2009 May 8.

24.

Functional analysis of free methionine-R-sulfoxide reductase from Saccharomyces cerevisiae.

Le DT, Lee BC, Marino SM, Zhang Y, Fomenko DE, Kaya A, Hacioglu E, Kwak GH, Koc A, Kim HY, Gladyshev VN.

J Biol Chem. 2009 Feb 13;284(7):4354-64. doi: 10.1074/jbc.M805891200. Epub 2008 Dec 2.

25.

Functional diversity of cysteine residues in proteins and unique features of catalytic redox-active cysteines in thiol oxidoreductases.

Fomenko DE, Marino SM, Gladyshev VN.

Mol Cells. 2008 Sep 30;26(3):228-35. Epub 2008 Jul 23. Review.

26.

Detrimental effects of mannose-binding lectin (MBL2) promoter genotype XA/XA on HIV-1 vertical transmission and AIDS progression.

Mangano A, Rocco C, Marino SM, Mecikovsky D, Genre F, Aulicino P, Bologna R, Sen L.

J Infect Dis. 2008 Sep 1;198(5):694-700. doi: 10.1086/590498.

PMID:
18637753
27.

Role of the tertiary structure in the diphenol oxidase activity of Octopus vulgaris hemocyanin.

Campello S, Beltramini M, Giordano G, Di Muro P, Marino SM, Bubacco L.

Arch Biochem Biophys. 2008 Mar 15;471(2):159-67. doi: 10.1016/j.abb.2008.01.006. Epub 2008 Jan 19.

PMID:
18237542
28.

New therapeutic protocol in the treatment of avascular necrosis of the jaws.

Agrillo A, Petrucci MT, Tedaldi M, Mustazza MC, Marino SM, Gallucci C, Iannetti G.

J Craniofac Surg. 2006 Nov;17(6):1080-3.

PMID:
17119409

Supplemental Content

Loading ...
Support Center