Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 34

1.

Human Intestinal Enteroids as a Model System of Shigella Pathogenesis.

Koestler BJ, Ward CM, Fisher CR, Rajan A, Maresso AW, Payne SM.

Infect Immun. 2019 Mar 25;87(4). pii: e00733-18. doi: 10.1128/IAI.00733-18. Print 2019 Apr.

PMID:
30642906
2.

Human Intestinal Enteroids for the Study of Bacterial Adherence, Invasion, and Translocation.

Poole NM, Rajan A, Maresso AW.

Curr Protoc Microbiol. 2018 Aug;50(1):e55. doi: 10.1002/cpmc.55. Epub 2018 May 17.

PMID:
29927096
3.

Novel Segment- and Host-Specific Patterns of Enteroaggregative Escherichia coli Adherence to Human Intestinal Enteroids.

Rajan A, Vela L, Zeng XL, Yu X, Shroyer N, Blutt SE, Poole NM, Carlin LG, Nataro JP, Estes MK, Okhuysen PC, Maresso AW.

MBio. 2018 Feb 20;9(1). pii: e02419-17. doi: 10.1128/mBio.02419-17.

4.

Metals Enhance the Killing of Bacteria by Bacteriophage in Human Blood.

Ma L, Green SI, Trautner BW, Ramig RF, Maresso AW.

Sci Rep. 2018 Feb 2;8(1):2326. doi: 10.1038/s41598-018-20698-2.

5.

Role for FimH in Extraintestinal Pathogenic Escherichia coli Invasion and Translocation through the Intestinal Epithelium.

Poole NM, Green SI, Rajan A, Vela LE, Zeng XL, Estes MK, Maresso AW.

Infect Immun. 2017 Oct 18;85(11). pii: e00581-17. doi: 10.1128/IAI.00581-17. Print 2017 Nov.

6.

Bacteriophages from ExPEC Reservoirs Kill Pandemic Multidrug-Resistant Strains of Clonal Group ST131 in Animal Models of Bacteremia.

Green SI, Kaelber JT, Ma L, Trautner BW, Ramig RF, Maresso AW.

Sci Rep. 2017 Apr 12;7:46151. doi: 10.1038/srep46151.

7.

Progress toward the Development of a NEAT Protein Vaccine for Anthrax Disease.

Balderas MA, Nguyen CT, Terwilliger A, Keitel WA, Iniguez A, Torres R, Palacios F, Goulding CW, Maresso AW.

Infect Immun. 2016 Nov 18;84(12):3408-3422. Print 2016 Dec.

8.

Iron and zinc exploitation during bacterial pathogenesis.

Ma L, Terwilliger A, Maresso AW.

Metallomics. 2015 Dec;7(12):1541-54. doi: 10.1039/c5mt00170f. Epub 2015 Oct 26. Review.

9.

Global metabolomic analysis of a mammalian host infected with Bacillus anthracis.

Nguyen CT, Shetty V, Maresso AW.

Infect Immun. 2015 Dec;83(12):4811-25. doi: 10.1128/IAI.00947-15. Epub 2015 Oct 5.

10.

Escherichia coli Free Radical-Based Killing Mechanism Driven by a Unique Combination of Iron Restriction and Certain Antibiotics.

Ma L, Gao Y, Maresso AW.

J Bacteriol. 2015 Dec;197(23):3708-19. doi: 10.1128/JB.00758-15. Epub 2015 Sep 21.

11.

Structure of the Bacillus anthracis Sortase A Enzyme Bound to Its Sorting Signal: A FLEXIBLE AMINO-TERMINAL APPENDAGE MODULATES SUBSTRATE ACCESS.

Chan AH, Yi SW, Terwilliger AL, Maresso AW, Jung ME, Clubb RT.

J Biol Chem. 2015 Oct 16;290(42):25461-74. doi: 10.1074/jbc.M115.670984. Epub 2015 Aug 31.

12.

A dual component heme biosensor that integrates heme transport and synthesis in bacteria.

Nobles CL, Clark JR, Green SI, Maresso AW.

J Microbiol Methods. 2015 Nov;118:7-17. doi: 10.1016/j.mimet.2015.07.011. Epub 2015 Aug 4.

13.

Murine model of chemotherapy-induced extraintestinal pathogenic Escherichia coli translocation.

Green SI, Ajami NJ, Ma L, Poole NM, Price RE, Petrosino JF, Maresso AW.

Infect Immun. 2015 Aug;83(8):3243-56. doi: 10.1128/IAI.00684-15. Epub 2015 Jun 1.

14.

Combining random gene fission and rational gene fusion to discover near-infrared fluorescent protein fragments that report on protein-protein interactions.

Pandey N, Nobles CL, Zechiedrich L, Maresso AW, Silberg JJ.

ACS Synth Biol. 2015 May 15;4(5):615-24. doi: 10.1021/sb5002938. Epub 2014 Oct 14.

15.

Molecular and evolutionary analysis of NEAr-iron Transporter (NEAT) domains.

Honsa ES, Maresso AW, Highlander SK.

PLoS One. 2014 Aug 25;9(8):e104794. doi: 10.1371/journal.pone.0104794. eCollection 2014.

16.

A product of heme catabolism modulates bacterial function and survival.

Nobles CL, Green SI, Maresso AW.

PLoS Pathog. 2013;9(7):e1003507. doi: 10.1371/journal.ppat.1003507. Epub 2013 Jul 25.

17.

The near-iron transporter (NEAT) domains of the anthrax hemophore IsdX2 require a critical glutamine to extract heme from methemoglobin.

Honsa ES, Owens CP, Goulding CW, Maresso AW.

J Biol Chem. 2013 Mar 22;288(12):8479-90. doi: 10.1074/jbc.M112.430009. Epub 2013 Jan 30.

18.

Hal Is a Bacillus anthracis heme acquisition protein.

Balderas MA, Nobles CL, Honsa ES, Alicki ER, Maresso AW.

J Bacteriol. 2012 Oct;194(20):5513-21. Epub 2012 Aug 3.

19.

Differential function of lip residues in the mechanism and biology of an anthrax hemophore.

Ekworomadu MT, Poor CB, Owens CP, Balderas MA, Fabian M, Olson JS, Murphy F, Bakkalbasi E, Honsa ES, He C, Goulding CW, Maresso AW.

PLoS Pathog. 2012;8(3):e1002559. doi: 10.1371/journal.ppat.1002559. Epub 2012 Mar 8. Erratum in: PLoS Pathog. 2014 Apr;10(4):e1004122. Balkabasi, Erol [corrected to Bakkalbasi, Erol].

20.

The five near-iron transporter (NEAT) domain anthrax hemophore, IsdX2, scavenges heme from hemoglobin and transfers heme to the surface protein IsdC.

Honsa ES, Fabian M, Cardenas AM, Olson JS, Maresso AW.

J Biol Chem. 2011 Sep 23;286(38):33652-60. doi: 10.1074/jbc.M111.241687. Epub 2011 Aug 1.

21.

The theft of host heme by Gram-positive pathogenic bacteria.

Nobles CL, Maresso AW.

Metallomics. 2011 Aug;3(8):788-96. doi: 10.1039/c1mt00047k. Epub 2011 Jul 4. Review.

PMID:
21725569
22.

Mechanisms of iron import in anthrax.

Honsa ES, Maresso AW.

Biometals. 2011 Jun;24(3):533-45. doi: 10.1007/s10534-011-9413-x. Epub 2011 Jan 22. Review.

PMID:
21258843
23.

A Bacillus anthracis S-layer homology protein that binds heme and mediates heme delivery to IsdC.

Tarlovsky Y, Fabian M, Solomaha E, Honsa E, Olson JS, Maresso AW.

J Bacteriol. 2010 Jul;192(13):3503-11. doi: 10.1128/JB.00054-10. Epub 2010 Apr 30.

24.

Heme transfer to the bacterial cell envelope occurs via a secreted hemophore in the Gram-positive pathogen Bacillus anthracis.

Fabian M, Solomaha E, Olson JS, Maresso AW.

J Biol Chem. 2009 Nov 13;284(46):32138-46. doi: 10.1074/jbc.M109.040915. Epub 2009 Sep 15.

25.

Bacillus anthracis secretes proteins that mediate heme acquisition from hemoglobin.

Maresso AW, Garufi G, Schneewind O.

PLoS Pathog. 2008 Aug 22;4(8):e1000132. doi: 10.1371/journal.ppat.1000132.

26.

Sortase as a target of anti-infective therapy.

Maresso AW, Schneewind O.

Pharmacol Rev. 2008 Mar;60(1):128-41. doi: 10.1124/pr.107.07110. Epub 2008 Mar 5. Review.

PMID:
18321961
27.

Activation of inhibitors by sortase triggers irreversible modification of the active site.

Maresso AW, Wu R, Kern JW, Zhang R, Janik D, Missiakas DM, Duban ME, Joachimiak A, Schneewind O.

J Biol Chem. 2007 Aug 10;282(32):23129-39. Epub 2007 Jun 1.

28.

Surface protein IsdC and Sortase B are required for heme-iron scavenging of Bacillus anthracis.

Maresso AW, Chapa TJ, Schneewind O.

J Bacteriol. 2006 Dec;188(23):8145-52. Epub 2006 Sep 29.

29.

Pseudomonas aeruginosa ExoS ADP-ribosyltransferase inhibits ERM phosphorylation.

Maresso AW, Deng Q, Pereckas MS, Wakim BT, Barbieri JT.

Cell Microbiol. 2007 Jan;9(1):97-105. Epub 2006 Aug 2.

PMID:
16889625
30.

Iron acquisition and transport in Staphylococcus aureus.

Maresso AW, Schneewind O.

Biometals. 2006 Apr;19(2):193-203. Review.

PMID:
16718604
31.

How bacterial ADP-ribosylating toxins recognize substrates.

Sun J, Maresso AW, Kim JJ, Barbieri JT.

Nat Struct Mol Biol. 2004 Sep;11(9):868-76. Epub 2004 Aug 15.

PMID:
15311272
32.

Ezrin/radixin/moesin proteins are high affinity targets for ADP-ribosylation by Pseudomonas aeruginosa ExoS.

Maresso AW, Baldwin MR, Barbieri JT.

J Biol Chem. 2004 Sep 10;279(37):38402-8. Epub 2004 Jul 12.

33.

Molecular heterogeneity of a type III cytotoxin, Pseudomonas aeruginosa exoenzyme S.

Maresso AW, Riese MJ, Barbieri JT.

Biochemistry. 2003 Dec 9;42(48):14249-57.

PMID:
14640693
34.

Supplemental Content

Loading ...
Support Center