Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 34

1.

Modulation of a Circulating Uremic Solute via Rational Genetic Manipulation of the Gut Microbiota.

Devlin AS, Marcobal A, Dodd D, Nayfach S, Plummer N, Meyer T, Pollard KS, Sonnenburg JL, Fischbach MA.

Cell Host Microbe. 2016 Dec 14;20(6):709-715. doi: 10.1016/j.chom.2016.10.021. Epub 2016 Dec 1.

2.

Individualized Responses of Gut Microbiota to Dietary Intervention Modeled in Humanized Mice.

Smits SA, Marcobal A, Higginbottom S, Sonnenburg JL, Kashyap PC.

mSystems. 2016 Sep 6;1(5). pii: e00098-16. eCollection 2016 Sep-Oct.

3.

Expression of Human Immunodeficiency Virus Type 1 Neutralizing Antibody Fragments Using Human Vaginal Lactobacillus.

Marcobal A, Liu X, Zhang W, Dimitrov AS, Jia L, Lee PP, Fouts TR, Parks TP, Lagenaur LA.

AIDS Res Hum Retroviruses. 2016 Oct/Nov;32(10-11):964-971. Epub 2016 Apr 13.

4.

Metabolome progression during early gut microbial colonization of gnotobiotic mice.

Marcobal A, Yusufaly T, Higginbottom S, Snyder M, Sonnenburg JL, Mias GI.

Sci Rep. 2015 Jun 29;5:11589. doi: 10.1038/srep11589.

5.

Genetically dictated change in host mucus carbohydrate landscape exerts a diet-dependent effect on the gut microbiota.

Kashyap PC, Marcobal A, Ursell LK, Smits SA, Sonnenburg ED, Costello EK, Higginbottom SK, Domino SE, Holmes SP, Relman DA, Knight R, Gordon JI, Sonnenburg JL.

Proc Natl Acad Sci U S A. 2013 Oct 15;110(42):17059-64. doi: 10.1073/pnas.1306070110. Epub 2013 Sep 23.

6.

Host-centric proteomics of stool: a novel strategy focused on intestinal responses to the gut microbiota.

Lichtman JS, Marcobal A, Sonnenburg JL, Elias JE.

Mol Cell Proteomics. 2013 Nov;12(11):3310-8. doi: 10.1074/mcp.M113.029967. Epub 2013 Aug 27.

7.

A metabolomic view of how the human gut microbiota impacts the host metabolome using humanized and gnotobiotic mice.

Marcobal A, Kashyap PC, Nelson TA, Aronov PA, Donia MS, Spormann A, Fischbach MA, Sonnenburg JL.

ISME J. 2013 Oct;7(10):1933-43. doi: 10.1038/ismej.2013.89. Epub 2013 Jun 6.

8.

A refined palate: bacterial consumption of host glycans in the gut.

Marcobal A, Southwick AM, Earle KA, Sonnenburg JL.

Glycobiology. 2013 Sep;23(9):1038-46. doi: 10.1093/glycob/cwt040. Epub 2013 May 28. Review.

9.

Complex interactions among diet, gastrointestinal transit, and gut microbiota in humanized mice.

Kashyap PC, Marcobal A, Ursell LK, Larauche M, Duboc H, Earle KA, Sonnenburg ED, Ferreyra JA, Higginbottom SK, Million M, Tache Y, Pasricha PJ, Knight R, Farrugia G, Sonnenburg JL.

Gastroenterology. 2013 May;144(5):967-77. doi: 10.1053/j.gastro.2013.01.047. Epub 2013 Feb 1.

10.

Human milk oligosaccharide consumption by intestinal microbiota.

Marcobal A, Sonnenburg JL.

Clin Microbiol Infect. 2012 Jul;18 Suppl 4:12-5. doi: 10.1111/j.1469-0691.2012.03863.x. Review.

11.

Tyramine and phenylethylamine biosynthesis by food bacteria.

Marcobal A, De las Rivas B, Landete JM, Tabera L, Muñoz R.

Crit Rev Food Sci Nutr. 2012;52(5):448-67. doi: 10.1080/10408398.2010.500545. Review.

PMID:
22369263
12.

Bacteroides in the infant gut consume milk oligosaccharides via mucus-utilization pathways.

Marcobal A, Barboza M, Sonnenburg ED, Pudlo N, Martens EC, Desai P, Lebrilla CB, Weimer BC, Mills DA, German JB, Sonnenburg JL.

Cell Host Microbe. 2011 Nov 17;10(5):507-14. doi: 10.1016/j.chom.2011.10.007. Epub 2011 Oct 27.

13.

An infant-associated bacterial commensal utilizes breast milk sialyloligosaccharides.

Sela DA, Li Y, Lerno L, Wu S, Marcobal AM, German JB, Chen X, Lebrilla CB, Mills DA.

J Biol Chem. 2011 Apr 8;286(14):11909-18. doi: 10.1074/jbc.M110.193359. Epub 2011 Feb 2. Erratum in: J Biol Chem. 2011 Jul 1;286(26):23620.

14.

Consumption of human milk oligosaccharides by gut-related microbes.

Marcobal A, Barboza M, Froehlich JW, Block DE, German JB, Lebrilla CB, Mills DA.

J Agric Food Chem. 2010 May 12;58(9):5334-40. doi: 10.1021/jf9044205.

15.

A randomized placebo-controlled comparison of 2 prebiotic/probiotic combinations in preterm infants: impact on weight gain, intestinal microbiota, and fecal short-chain fatty acids.

Underwood MA, Salzman NH, Bennett SH, Barman M, Mills DA, Marcobal A, Tancredi DJ, Bevins CL, Sherman MP.

J Pediatr Gastroenterol Nutr. 2009 Feb;48(2):216-25. doi: 10.1097/MPG.0b013e31818de195.

16.

Updated molecular knowledge about histamine biosynthesis by bacteria.

Landete JM, De las Rivas B, Marcobal A, Muñoz R.

Crit Rev Food Sci Nutr. 2008 Sep;48(8):697-714. doi: 10.1080/10408390701639041. Review.

PMID:
18756395
17.

Rapid determination of the bacterial composition of commercial probiotic products by terminal restriction fragment length polymorphism analysis.

Marcobal A, Underwood MA, Mills DA.

J Pediatr Gastroenterol Nutr. 2008 May;46(5):608-11. doi: 10.1097/MPG.0b013e3181660694.

PMID:
18493222
18.

Role of hypermutability in the evolution of the genus Oenococcus.

Marcobal AM, Sela DA, Wolf YI, Makarova KS, Mills DA.

J Bacteriol. 2008 Jan;190(2):564-70. Epub 2007 Nov 9.

19.

Gene organization of the ornithine decarboxylase-encoding region in Morganella morganii.

de las Rivas B, Marcobal A, Muñoz R.

J Appl Microbiol. 2007 Jun;102(6):1551-60.

20.

Molecular methods for the detection of biogenic amine-producing bacteria on foods.

Landete JM, de Las Rivas B, Marcobal A, Muñoz R.

Int J Food Microbiol. 2007 Jul 15;117(3):258-69. Epub 2007 May 10. Review.

PMID:
17532497
21.

PCR detection of foodborne bacteria producing the biogenic amines histamine, tyramine, putrescine, and cadaverine.

de las Rivas B, Marcobal A, Carrascosa AV, Muñoz R.

J Food Prot. 2006 Oct;69(10):2509-14.

PMID:
17066936
22.

Evidence for horizontal gene transfer as origin of putrescine production in Oenococcus oeni RM83.

Marcobal A, de las Rivas B, Moreno-Arribas MV, Muñoz R.

Appl Environ Microbiol. 2006 Dec;72(12):7954-8. Epub 2006 Oct 20.

23.
24.

Formation of biogenic amines throughout the industrial manufacture of red wine.

Marcobal A, Martín-Alvarez PJ, Polo MC, Muñoz R, Moreno-Arribas MV.

J Food Prot. 2006 Feb;69(2):397-404.

PMID:
16496582
25.

A multifactorial design for studying factors influencing growth and tyramine production of the lactic acid bacteria Lactobacillus brevis CECT 4669 and Enterococcus faecium BIFI-58.

Marcobal A, Martín-Alvarez PJ, Moreno-Arribas MV, Muñoz R.

Res Microbiol. 2006 Jun;157(5):417-24. Epub 2006 Jan 13.

PMID:
16488576
26.

Development of a multilocus sequence typing method for analysis of Lactobacillus plantarum strains.

de Las Rivas B, Marcobal A, Muñoz R.

Microbiology. 2006 Jan;152(Pt 1):85-93.

PMID:
16385118
27.

Characterization of ISLpl4, a functional insertion sequence in Lactobacillus plantarum.

de Las Rivas B, Marcobal Ae, Gómez A, Muñoz R.

Gene. 2005 Dec 19;363:202-10. Epub 2005 Nov 8.

PMID:
16278055
28.

Multiplex PCR method for the simultaneous detection of histamine-, tyramine-, and putrescine-producing lactic acid bacteria in foods.

Marcobal A, de las Rivas B, Moreno-Arribas MV, Muñoz R.

J Food Prot. 2005 Apr;68(4):874-8.

PMID:
15830688
29.

Improved multiplex-PCR method for the simultaneous detection of food bacteria producing biogenic amines.

de Las Rivas B, Marcobal A, Muñoz R.

FEMS Microbiol Lett. 2005 Mar 15;244(2):367-72.

30.
32.

Identification of the ornithine decarboxylase gene in the putrescine-producer Oenococcus oeni BIFI-83.

Marcobal A, de las Rivas B, Moreno-Arribas MV, Muñoz R.

FEMS Microbiol Lett. 2004 Oct 15;239(2):213-20.

33.

The tyrosine decarboxylation test does not differentiate Enterococcus faecalis from Enterococcus faecium.

Marcobal A, de las Rivas B, García-Moruno E, Muñoz R.

Syst Appl Microbiol. 2004 Aug;27(4):423-6.

PMID:
15368847
34.

Tannase activity by lactic acid bacteria isolated from grape must and wine.

Vaquero I, Marcobal A, Muñoz R.

Int J Food Microbiol. 2004 Nov 1;96(2):199-204.

PMID:
15364474

Supplemental Content

Loading ...
Support Center