Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 75

1.

One Basic Blueprint, Many Different Motors.

Manson MD.

J Bacteriol. 2019 Mar 26;201(8). pii: e00019-19. doi: 10.1128/JB.00019-19. Print 2019 Apr 15.

2.

Transmembrane Signal Transduction in Bacterial Chemosensing.

Manson MD.

Methods Mol Biol. 2018;1729:7-19. doi: 10.1007/978-1-4939-7577-8_2.

PMID:
29429078
3.

The Diversity of Bacterial Chemosensing.

Manson MD.

Methods Mol Biol. 2018;1729:3-6. doi: 10.1007/978-1-4939-7577-8_1.

PMID:
29429077
4.

Chemotaxis to self-generated AI-2 promotes biofilm formation in Escherichia coli.

Jani S, Seely AL, Peabody V GL, Jayaraman A, Manson MD.

Microbiology. 2017 Nov 9. doi: 10.1099/mic.0.000567. [Epub ahead of print]

PMID:
29125461
5.

Conversion of Norepinephrine to 3,4-Dihdroxymandelic Acid in Escherichia coli Requires the QseBC Quorum-Sensing System and the FeaR Transcription Factor.

Pasupuleti S, Sule N, Manson MD, Jayaraman A.

J Bacteriol. 2017 Dec 5;200(1). pii: e00564-17. doi: 10.1128/JB.00564-17. Print 2018 Jan 1.

6.

The Norepinephrine Metabolite 3,4-Dihydroxymandelic Acid Is Produced by the Commensal Microbiota and Promotes Chemotaxis and Virulence Gene Expression in Enterohemorrhagic Escherichia coli.

Sule N, Pasupuleti S, Kohli N, Menon R, Dangott LJ, Manson MD, Jayaraman A.

Infect Immun. 2017 Sep 20;85(10). pii: e00431-17. doi: 10.1128/IAI.00431-17. Print 2017 Oct.

7.

Chemotaxis of Escherichia coli to norepinephrine (NE) requires conversion of NE to 3,4-dihydroxymandelic acid.

Pasupuleti S, Sule N, Cohn WB, MacKenzie DS, Jayaraman A, Manson MD.

J Bacteriol. 2014 Dec;196(23):3992-4000. doi: 10.1128/JB.02065-14. Epub 2014 Sep 2.

8.

Cryoelectron tomography reveals the sequential assembly of bacterial flagella in Borrelia burgdorferi.

Zhao X, Zhang K, Boquoi T, Hu B, Motaleb MA, Miller KA, James ME, Charon NW, Manson MD, Norris SJ, Li C, Liu J.

Proc Natl Acad Sci U S A. 2013 Aug 27;110(35):14390-5. doi: 10.1073/pnas.1308306110. Epub 2013 Aug 12.

9.

Residues at the cytoplasmic end of transmembrane helix 2 determine the signal output of the TarEc chemoreceptor.

Adase CA, Draheim RR, Rueda G, Desai R, Manson MD.

Biochemistry. 2013 Apr 23;52(16):2729-38. doi: 10.1021/bi4002002. Epub 2013 Apr 12.

PMID:
23495653
10.

Molecular architecture of chemoreceptor arrays revealed by cryoelectron tomography of Escherichia coli minicells.

Liu J, Hu B, Morado DR, Jani S, Manson MD, Margolin W.

Proc Natl Acad Sci U S A. 2012 Jun 5;109(23):E1481-8. doi: 10.1073/pnas.1200781109. Epub 2012 May 3.

11.
12.

Transmembrane signaling is anything but rigid.

Manson MD.

J Bacteriol. 2011 Oct;193(19):5059-61. doi: 10.1128/JB.05874-11. Epub 2011 Jul 29. No abstract available.

13.

Not too loose, not too tight--just right. Biphasic control of the Tsr HAMP domain.

Manson MD.

Mol Microbiol. 2011 May;80(3):573-6. doi: 10.1111/j.1365-2958.2011.07578.x. Epub 2011 Feb 28.

14.

Chemotaxis to the quorum-sensing signal AI-2 requires the Tsr chemoreceptor and the periplasmic LsrB AI-2-binding protein.

Hegde M, Englert DL, Schrock S, Cohn WB, Vogt C, Wood TK, Manson MD, Jayaraman A.

J Bacteriol. 2011 Feb;193(3):768-73. doi: 10.1128/JB.01196-10. Epub 2010 Nov 19.

15.

Mutational analysis of the transmembrane helix 2-HAMP domain connection in the Escherichia coli aspartate chemoreceptor tar.

Wright GA, Crowder RL, Draheim RR, Manson MD.

J Bacteriol. 2011 Jan;193(1):82-90. doi: 10.1128/JB.00953-10. Epub 2010 Sep 24.

16.

Dynamic motors for bacterial flagella.

Manson MD.

Proc Natl Acad Sci U S A. 2010 Jun 22;107(25):11151-2. doi: 10.1073/pnas.1006365107. Epub 2010 Jun 11. No abstract available.

17.

Investigation of bacterial chemotaxis in flow-based microfluidic devices.

Englert DL, Manson MD, Jayaraman A.

Nat Protoc. 2010 May;5(5):864-72. doi: 10.1038/nprot.2010.18. Epub 2010 Apr 15.

PMID:
20431532
18.

A microfluidic device for quantifying bacterial chemotaxis in stable concentration gradients.

Englert DL, Manson MD, Jayaraman A.

J Vis Exp. 2010 Apr 19;(38). pii: 1779. doi: 10.3791/1779.

19.

Repellent taxis in response to nickel ion requires neither Ni2+ transport nor the periplasmic NikA binding protein.

Englert DL, Adase CA, Jayaraman A, Manson MD.

J Bacteriol. 2010 May;192(10):2633-7. doi: 10.1128/JB.00854-09. Epub 2010 Mar 16. Erratum in: J Bacteriol. 2010 Aug;192(16):4259.

20.

Microfluidic techniques for the analysis of bacterial chemotaxis.

Englert DL, Jayaraman A, Manson MD.

Methods Mol Biol. 2009;571:1-23. doi: 10.1007/978-1-60761-198-1_1.

PMID:
19763956
21.

A mutational wrench in the HAMP gearbox.

Manson MD.

Mol Microbiol. 2009 Sep;73(5):742-6. doi: 10.1111/j.1365-2958.2009.06818.x. Epub 2009 Aug 12.

22.

A grand view of the flagellar motor.

Manson MD, Harlow ML.

J Bacteriol. 2009 Aug;191(16):5023-5. doi: 10.1128/JB.00695-09. Epub 2009 Jun 19. No abstract available.

23.

Protein domains and residues involved in the CheZ/CheAS interaction.

Cantwell BJ, Manson MD.

J Bacteriol. 2009 Sep;191(18):5838-41. doi: 10.1128/JB.00280-09. Epub 2009 Jun 19.

24.

Flow-based microfluidic device for quantifying bacterial chemotaxis in stable, competing gradients.

Englert DL, Manson MD, Jayaraman A.

Appl Environ Microbiol. 2009 Jul;75(13):4557-64. doi: 10.1128/AEM.02952-08. Epub 2009 May 1.

25.

The region preceding the C-terminal NWETF pentapeptide modulates baseline activity and aspartate inhibition of Escherichia coli Tar.

Lai RZ, Bormans AF, Draheim RR, Wright GA, Manson MD.

Biochemistry. 2008 Dec 16;47(50):13287-95. doi: 10.1021/bi8013399.

PMID:
19053273
26.

The tie that binds the dynamic duo: the connector between AS1 and AS2 in the HAMP domain of the Escherichia coli Tsr chemoreceptor.

Manson MD.

J Bacteriol. 2008 Oct;190(20):6544-7. doi: 10.1128/JB.00943-08. Epub 2008 Aug 15. No abstract available.

27.

Clusters of charged residues at the C terminus of MotA and N terminus of MotB are important for function of the Escherichia coli flagellar motor.

Hosking ER, Manson MD.

J Bacteriol. 2008 Aug;190(15):5517-21. doi: 10.1128/JB.00407-08. Epub 2008 May 9.

28.

Tuning a bacterial chemoreceptor with protein-membrane interactions.

Draheim RR, Bormans AF, Lai RZ, Manson MD.

Biochemistry. 2006 Dec 12;45(49):14655-64.

PMID:
17144658
29.

How 34 pegs fit into 26 + 8 holes in the flagellar motor.

Manson MD.

J Bacteriol. 2007 Jan;189(2):291-3. Epub 2006 Nov 3. No abstract available.

30.

The Escherichia coli MotAB proton channel unplugged.

Hosking ER, Vogt C, Bakker EP, Manson MD.

J Mol Biol. 2006 Dec 15;364(5):921-37. Epub 2006 Sep 16.

PMID:
17052729
31.

Mutationally altered signal output in the Nart (NarX-Tar) hybrid chemoreceptor.

Ward SM, Bormans AF, Manson MD.

J Bacteriol. 2006 Jun;188(11):3944-51.

32.

Cooperative signaling among bacterial chemoreceptors.

Lai RZ, Manson JM, Bormans AF, Draheim RR, Nguyen NT, Manson MD.

Biochemistry. 2005 Nov 1;44(43):14298-307.

PMID:
16245946
33.

Tryptophan residues flanking the second transmembrane helix (TM2) set the signaling state of the Tar chemoreceptor.

Draheim RR, Bormans AF, Lai RZ, Manson MD.

Biochemistry. 2005 Feb 1;44(4):1268-77.

PMID:
15667220
35.

A sensitive, versatile microfluidic assay for bacterial chemotaxis.

Mao H, Cremer PS, Manson MD.

Proc Natl Acad Sci U S A. 2003 Apr 29;100(9):5449-54. Epub 2003 Apr 18.

36.

CheZ phosphatase localizes to chemoreceptor patches via CheA-short.

Cantwell BJ, Draheim RR, Weart RB, Nguyen C, Stewart RC, Manson MD.

J Bacteriol. 2003 Apr;185(7):2354-61.

37.

A NarX-Tar chimera mediates repellent chemotaxis to nitrate and nitrite.

Ward SM, Delgado A, Gunsalus RP, Manson MD.

Mol Microbiol. 2002 May;44(3):709-19.

38.

Thanks, Charley.

Manson MD.

J Bacteriol. 2002 Apr;184(8):2065-71. No abstract available.

39.

Holins kill without warning.

Gr√ľndling A, Manson MD, Young R.

Proc Natl Acad Sci U S A. 2001 Jul 31;98(16):9348-52. Epub 2001 Jul 17.

40.

Model is as model does.

Manson MD, Cantwell BJ.

Nat Cell Biol. 2000 Nov;2(11):E199-201. Review. No abstract available.

PMID:
11056546
41.

Mot protein assembly into the bacterial flagellum: a model based on mutational analysis of the motB gene.

Van Way SM, Hosking ER, Braun TF, Manson MD.

J Mol Biol. 2000 Mar 17;297(1):7-24.

PMID:
10704303
42.
43.

Model of maltose-binding protein/chemoreceptor complex supports intrasubunit signaling mechanism.

Zhang Y, Gardina PJ, Kuebler AS, Kang HS, Christopher JA, Manson MD.

Proc Natl Acad Sci U S A. 1999 Feb 2;96(3):939-44.

44.
45.

Bacterial locomotion and signal transduction.

Manson MD, Armitage JP, Hoch JA, Macnab RM.

J Bacteriol. 1998 Mar;180(5):1009-22. Review. No abstract available.

46.

Chimeric chemoreceptors in Escherichia coli: signaling properties of Tar-Tap and Tap-Tar hybrids.

Weerasuriya S, Schneider BM, Manson MD.

J Bacteriol. 1998 Feb;180(4):914-20.

47.

Maltose-binding protein interacts simultaneously and asymmetrically with both subunits of the Tar chemoreceptor.

Gardina PJ, Bormans AF, Hawkins MA, Meeker JW, Manson MD.

Mol Microbiol. 1997 Mar;23(6):1181-91.

48.

Extragenic suppression of motA missense mutations of Escherichia coli.

Garza AG, Bronstein PA, Valdez PA, Harris-Haller LW, Manson MD.

J Bacteriol. 1996 Nov;178(21):6116-22.

49.

Attractant signaling by an aspartate chemoreceptor dimer with a single cytoplasmic domain.

Gardina PJ, Manson MD.

Science. 1996 Oct 18;274(5286):425-6.

PMID:
8832892
50.

Maltose-binding protein containing an interdomain disulfide bridge confers a dominant-negative phenotype for transport and chemotaxis.

Zhang Y, Mannering DE, Davidson AL, Yao N, Manson MD.

J Biol Chem. 1996 Jul 26;271(30):17881-9.

Supplemental Content

Loading ...
Support Center