Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 30

1.
2.

The C. elegans intestine: organogenesis, digestion, and physiology.

Dimov I, Maduro MF.

Cell Tissue Res. 2019 Sep;377(3):383-396. doi: 10.1007/s00441-019-03036-4. Epub 2019 May 7. Review.

PMID:
31065800
3.

Genetic interaction between DNA replication and the Notch signaling pathway.

Maduro MF.

FEBS J. 2018 Jul;285(14):2586-2589. doi: 10.1111/febs.14584. Epub 2018 Jun 29.

4.

Partially compromised specification causes stochastic effects on gut development in C. elegans.

Choi H, Broitman-Maduro G, Maduro MF.

Dev Biol. 2017 Jul 1;427(1):49-60. doi: 10.1016/j.ydbio.2017.05.007. Epub 2017 May 11.

5.

Gut development in C. elegans.

Maduro MF.

Semin Cell Dev Biol. 2017 Jun;66:3-11. doi: 10.1016/j.semcdb.2017.01.001. Epub 2017 Jan 5. Review.

PMID:
28065852
6.

20 Years of unc-119 as a transgene marker.

Maduro MF.

Worm. 2015 Jun 19;4(3):e1046031. doi: 10.1080/21624054.2015.1046031. eCollection 2015 Jul-Sep.

7.

Developmental robustness in the Caenorhabditis elegans embryo.

Maduro MF.

Mol Reprod Dev. 2015 Dec;82(12):918-31. doi: 10.1002/mrd.22582. Epub 2015 Sep 18. Review.

8.

MED GATA factors promote robust development of the C. elegans endoderm.

Maduro MF, Broitman-Maduro G, Choi H, Carranza F, Wu AC, Rifkin SA.

Dev Biol. 2015 Aug 1;404(1):66-79. doi: 10.1016/j.ydbio.2015.04.025. Epub 2015 May 8.

9.

Gene expression profiling of gastrocnemius of "minimuscle" mice.

Burniston JG, Meek TH, Pandey SN, Broitman-Maduro G, Maduro MF, Bronikowski AM, Garland T Jr, Chen YW.

Physiol Genomics. 2013 Mar 18;45(6):228-36. doi: 10.1152/physiolgenomics.00149.2012. Epub 2013 Jan 29.

10.

In situ hybridization of embryos with antisense RNA probes.

Broitman-Maduro G, Maduro MF.

Methods Cell Biol. 2011;106:253-70. doi: 10.1016/B978-0-12-544172-8.00009-8.

PMID:
22118280
11.

Transgenesis in C. elegans.

Praitis V, Maduro MF.

Methods Cell Biol. 2011;106:161-85. doi: 10.1016/B978-0-12-544172-8.00006-2. Review.

PMID:
22118277
12.

Effects of residual antibiotics in groundwater on Salmonella typhimurium: changes in antibiotic resistance, in vivo and in vitro pathogenicity.

Haznedaroglu BZ, Yates MV, Maduro MF, Walker SL.

J Environ Monit. 2012 Jan;14(1):41-7. doi: 10.1039/c1em10723b. Epub 2011 Nov 4.

PMID:
22051852
13.

Endoderm development in Caenorhabditis elegans: the synergistic action of ELT-2 and -7 mediates the specification→differentiation transition.

Sommermann EM, Strohmaier KR, Maduro MF, Rothman JH.

Dev Biol. 2010 Nov 1;347(1):154-66. doi: 10.1016/j.ydbio.2010.08.020. Epub 2010 Aug 31.

14.

Cell fate specification in the C. elegans embryo.

Maduro MF.

Dev Dyn. 2010 May;239(5):1315-29. doi: 10.1002/dvdy.22233. Review.

15.

Roles of the Wnt effector POP-1/TCF in the C. elegans endomesoderm specification gene network.

Owraghi M, Broitman-Maduro G, Luu T, Roberson H, Maduro MF.

Dev Biol. 2010 Apr 15;340(2):209-21. doi: 10.1016/j.ydbio.2009.09.042. Epub 2009 Oct 7.

16.

The NK-2 class homeodomain factor CEH-51 and the T-box factor TBX-35 have overlapping function in C. elegans mesoderm development.

Broitman-Maduro G, Owraghi M, Hung WW, Kuntz S, Sternberg PW, Maduro MF.

Development. 2009 Aug;136(16):2735-46. doi: 10.1242/dev.038307. Epub 2009 Jul 15.

17.

Knockdown of SKN-1 and the Wnt effector TCF/POP-1 reveals differences in endomesoderm specification in C. briggsae as compared with C. elegans.

Lin KT, Broitman-Maduro G, Hung WW, Cervantes S, Maduro MF.

Dev Biol. 2009 Jan 1;325(1):296-306. doi: 10.1016/j.ydbio.2008.10.001. Epub 2008 Oct 19.

18.

Structure and evolution of the C. elegans embryonic endomesoderm network.

Maduro MF.

Biochim Biophys Acta. 2009 Apr;1789(4):250-60. doi: 10.1016/j.bbagrm.2008.07.013. Epub 2008 Aug 6. Review.

19.

Endomesoderm specification in Caenorhabditis elegans and other nematodes.

Maduro MF.

Bioessays. 2006 Oct;28(10):1010-22. Review.

PMID:
16998834
20.

Maternal deployment of the embryonic SKN-1-->MED-1,2 cell specification pathway in C. elegans.

Maduro MF, Broitman-Maduro G, Mengarelli I, Rothman JH.

Dev Biol. 2007 Jan 15;301(2):590-601. Epub 2006 Aug 22.

21.

Specification of the C. elegans MS blastomere by the T-box factor TBX-35.

Broitman-Maduro G, Lin KT, Hung WW, Maduro MF.

Development. 2006 Aug;133(16):3097-106. Epub 2006 Jul 10.

22.

Med-type GATA factors and the evolution of mesendoderm specification in nematodes.

Coroian C, Broitman-Maduro G, Maduro MF.

Dev Biol. 2006 Jan 15;289(2):444-55. Epub 2005 Dec 1.

23.
24.

Genetic redundancy in endoderm specification within the genus Caenorhabditis.

Maduro MF, Hill RJ, Heid PJ, Newman-Smith ED, Zhu J, Priess JR, Rothman JH.

Dev Biol. 2005 Aug 15;284(2):509-22.

25.

The noncanonical binding site of the MED-1 GATA factor defines differentially regulated target genes in the C. elegans mesendoderm.

Broitman-Maduro G, Maduro MF, Rothman JH.

Dev Cell. 2005 Mar;8(3):427-33. Erratum in: Dev Cell. 2006 May;10(5):683.

26.

Cell fates and fusion in the C. elegans vulval primordium are regulated by the EGL-18 and ELT-6 GATA factors -- apparent direct targets of the LIN-39 Hox protein.

Koh K, Peyrot SM, Wood CG, Wagmaister JA, Maduro MF, Eisenmann DM, Rothman JH.

Development. 2002 Nov;129(22):5171-80.

28.

Making worm guts: the gene regulatory network of the Caenorhabditis elegans endoderm.

Maduro MF, Rothman JH.

Dev Biol. 2002 Jun 1;246(1):68-85. Review.

29.
30.

The UNC-119 family of neural proteins is functionally conserved between humans, Drosophila and C. elegans.

Maduro MF, Gordon M, Jacobs R, Pilgrim DB.

J Neurogenet. 2000 Jan;13(4):191-212.

PMID:
10858820

Supplemental Content

Loading ...
Support Center