Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 47

1.

MtrA Response Regulator Controls Cell Division and Cell Wall Metabolism and Affects Susceptibility of Mycobacteria to the First Line Antituberculosis Drugs.

Gorla P, Plocinska R, Sarva K, Satsangi AT, Pandeeti E, Donnelly R, Dziadek J, Rajagopalan M, Madiraju MV.

Front Microbiol. 2018 Nov 23;9:2839. doi: 10.3389/fmicb.2018.02839. eCollection 2018.

2.

Mycobacterium tuberculosis oriC sequestration by MtrA response regulator.

Purushotham G, Sarva KB, Blaszczyk E, Rajagopalan M, Madiraju MV.

Mol Microbiol. 2015 Oct;98(3):586-604. doi: 10.1111/mmi.13144. Epub 2015 Aug 31.

3.

Mycobacterium tuberculosis MtrB sensor kinase interactions with FtsI and Wag31 proteins reveal a role for MtrB distinct from that regulating MtrA activities.

Plocinska R, Martinez L, Gorla P, Pandeeti E, Sarva K, Blaszczyk E, Dziadek J, Madiraju MV, Rajagopalan M.

J Bacteriol. 2014 Dec;196(23):4120-9. doi: 10.1128/JB.01795-14. Epub 2014 Sep 15.

4.

Mycobacterium tuberculosis MtrAY102C is a gain-of-function mutant that potentially acts as a constitutively active protein.

Satsangi AT, Pandeeti EP, Sarva K, Rajagopalan M, Madiraju MV.

Tuberculosis (Edinb). 2013 Dec;93 Suppl:S28-32. doi: 10.1016/S1472-9792(13)70007-6.

PMID:
24388645
5.

The lack of L-PG production and the repercussions of it in regards to M. Tuberculosis interactions with mononuclear phagocytes.

Fol M, Głobińska A, Stączek P, Kowalewicz-Kulbat M, Druszczyńska M, Madiraju MV, Rudnicka W.

Acta Microbiol Immunol Hung. 2013 Jun;60(2):127-44. doi: 10.1556/AMicr.60.2013.2.4.

PMID:
23827745
6.

Interactions between an M. tuberculosis strain overexpressing mtrA and mononuclear phagocytes.

Fol M, Iwan-Barańska L, Stączek P, Krupiński M, Różalska S, Kowalewicz-Kulbat M, Druszczyńska M, Madiraju MV, Kaczmarczyk D, Rudnicka W.

Adv Med Sci. 2013;58(1):172-83. doi: 10.2478/v10039-012-0058-y.

PMID:
23640943
7.

Septal localization of the Mycobacterium tuberculosis MtrB sensor kinase promotes MtrA regulon expression.

Plocinska R, Purushotham G, Sarva K, Vadrevu IS, Pandeeti EV, Arora N, Plocinski P, Madiraju MV, Rajagopalan M.

J Biol Chem. 2012 Jul 6;287(28):23887-99. doi: 10.1074/jbc.M112.346544. Epub 2012 May 20.

8.

Control of CydB and GltA1 expression by the SenX3 RegX3 two component regulatory system of Mycobacterium tuberculosis.

Roberts G, Vadrevu IS, Madiraju MV, Parish T.

PLoS One. 2011;6(6):e21090. doi: 10.1371/journal.pone.0021090. Epub 2011 Jun 16.

9.

Alterations in phospholipid catabolism in Mycobacterium tuberculosis lysX mutant.

Maloney E, Lun S, Stankowska D, Guo H, Rajagoapalan M, Bishai WR, Madiraju MV.

Front Microbiol. 2011 Feb 11;2:19.

10.

Mycobacterium tuberculosis mtrA merodiploid strains with point mutations in the signal-receiving domain of MtrA exhibit growth defects in nutrient broth.

Al Zayer M, Stankowska D, Dziedzic R, Sarva K, Madiraju MV, Rajagopalan M.

Plasmid. 2011 May;65(3):210-8. doi: 10.1016/j.plasmid.2011.01.002. Epub 2011 Feb 3.

11.

Mycobacterium tuberculosis origin of replication and the promoter for immunodominant secreted antigen 85B are the targets of MtrA, the essential response regulator.

Rajagopalan M, Dziedzic R, Al Zayer M, Stankowska D, Ouimet MC, Bastedo DP, Marczynski GT, Madiraju MV.

J Biol Chem. 2010 May 21;285(21):15816-27. doi: 10.1074/jbc.M109.040097. Epub 2010 Mar 11.

12.

The two-domain LysX protein of Mycobacterium tuberculosis is required for production of lysinylated phosphatidylglycerol and resistance to cationic antimicrobial peptides.

Maloney E, Stankowska D, Zhang J, Fol M, Cheng QJ, Lun S, Bishai WR, Rajagopalan M, Chatterjee D, Madiraju MV.

PLoS Pathog. 2009 Jul;5(7):e1000534. doi: 10.1371/journal.ppat.1000534. Epub 2009 Jul 31.

13.

Synchronous replication initiation in novel Mycobacterium tuberculosis dnaA cold-sensitive mutants.

Nair N, Dziedzic R, Greendyke R, Muniruzzaman S, Rajagopalan M, Madiraju MV.

Mol Microbiol. 2009 Jan;71(2):291-304. doi: 10.1111/j.1365-2958.2008.06523.x. Epub 2008 Nov 14.

14.

Facilitation of dissociation reaction of nucleotides bound to Mycobacterium tuberculosis DnaA.

Yamamoto K, Moomey M, Rajagopalan M, Madiraju MV.

J Biochem. 2008 Jun;143(6):759-64. doi: 10.1093/jb/mvn025. Epub 2008 Feb 22.

15.

Interference of Mycobacterium tuberculosis cell division by Rv2719c, a cell wall hydrolase.

Chauhan A, Lofton H, Maloney E, Moore J, Fol M, Madiraju MV, Rajagopalan M.

Mol Microbiol. 2006 Oct;62(1):132-47. Epub 2006 Aug 30.

16.

Modulation of Mycobacterium tuberculosis proliferation by MtrA, an essential two-component response regulator.

Fol M, Chauhan A, Nair NK, Maloney E, Moomey M, Jagannath C, Madiraju MV, Rajagopalan M.

Mol Microbiol. 2006 May;60(3):643-57.

17.

The intrinsic ATPase activity of Mycobacterium tuberculosis DnaA promotes rapid oligomerization of DnaA on oriC.

Madiraju MV, Moomey M, Neuenschwander PF, Muniruzzaman S, Yamamoto K, Grimwade JE, Rajagopalan M.

Mol Microbiol. 2006 Mar;59(6):1876-90.

18.

Mycobacterium tuberculosis cells growing in macrophages are filamentous and deficient in FtsZ rings.

Chauhan A, Madiraju MV, Fol M, Lofton H, Maloney E, Reynolds R, Rajagopalan M.

J Bacteriol. 2006 Mar;188(5):1856-65.

19.

Genetic evidence that mycobacterial FtsZ and FtsW proteins interact, and colocalize to the division site in Mycobacterium smegmatis.

Rajagopalan M, Maloney E, Dziadek J, Poplawska M, Lofton H, Chauhan A, Madiraju MV.

FEMS Microbiol Lett. 2005 Sep 1;250(1):9-17.

20.

Mutations in the GTP-binding and synergy loop domains of Mycobacterium tuberculosis ftsZ compromise its function in vitro and in vivo.

Rajagopalan M, Atkinson MA, Lofton H, Chauhan A, Madiraju MV.

Biochem Biophys Res Commun. 2005 Jun 17;331(4):1171-7.

PMID:
15882999
21.

Conditional expression of Mycobacterium smegmatis ftsZ, an essential cell division gene.

Dziadek J, Rutherford SA, Madiraju MV, Atkinson MA, Rajagopalan M.

Microbiology. 2003 Jun;149(Pt 6):1593-603.

PMID:
12777499
22.

Conditional expression of Mycobacterium smegmatis dnaA, an essential DNA replication gene.

Greendyke R, Rajagopalan M, Parish T, Madiraju MV.

Microbiology. 2002 Dec;148(Pt 12):3887-900.

PMID:
12480893
23.

Escherichia coli RecO protein anneals ssDNA complexed with its cognate ssDNA-binding protein: A common step in genetic recombination.

Kantake N, Madiraju MV, Sugiyama T, Kowalczykowski SC.

Proc Natl Acad Sci U S A. 2002 Nov 26;99(24):15327-32. Epub 2002 Nov 18.

24.

Mutations in the CCGTTCACA DnaA box of Mycobacterium tuberculosis oriC that abolish replication of oriC plasmids are tolerated on the chromosome.

Dziadek J, Rajagopalan M, Parish T, Kurepina N, Greendyke R, Kreiswirth BN, Madiraju MV.

J Bacteriol. 2002 Jul;184(14):3848-55.

25.

Physiological consequences associated with overproduction of Mycobacterium tuberculosis FtsZ in mycobacterial hosts.

Dziadek J, Madiraju MV, Rutherford SA, Atkinson MA, Rajagopalan M.

Microbiology. 2002 Apr;148(Pt 4):961-71.

PMID:
11932443
26.

Modulation of Mycobacterium tuberculosis DnaA protein-adenine-nucleotide interactions by acidic phospholipids.

Yamamoto K, Muniruzzaman S, Rajagopalan M, Madiraju MV.

Biochem J. 2002 Apr 15;363(Pt 2):305-11. Erratum in: Biochem J 2002 Jun 15;364(Pt 3):887-8.

27.

The Mycobacterium avium-intracellulare complex dnaB locus and protein intein splicing.

Yamamoto K, Low B, Rutherford SA, Rajagopalan M, Madiraju MV.

Biochem Biophys Res Commun. 2001 Jan 26;280(3):898-903.

PMID:
11162608
28.

Development of simple and efficient protocol for isolation of plasmids from mycobacteria using zirconia beads.

Madiraju MV, Qin MH, Rajagopalan M.

Lett Appl Microbiol. 2000 Jan;30(1):38-41.

29.

The dnaA gene region of Mycobacterium avium and the autonomous replication activities of its 5' and 3' flanking regions.

Madiraju MV, Qin MH, Yamamoto K, Atkinson MA, Rajagopalan M.

Microbiology. 1999 Oct;145 ( Pt 10):2913-21.

PMID:
10537213
30.

Characterization of the functional replication origin of Mycobacterium tuberculosis.

Qin MH, Madiraju MV, Rajagopalan M.

Gene. 1999 Jun 11;233(1-2):121-30.

PMID:
10375628
31.

Characterization of the oriC region of Mycobacterium smegmatis.

Qin MH, Madiraju MV, Zachariah S, Rajagopalan M.

J Bacteriol. 1997 Oct;179(20):6311-7.

32.

Interactions of RecF protein with RecO, RecR, and single-stranded DNA binding proteins reveal roles for the RecF-RecO-RecR complex in DNA repair and recombination.

Hegde SP, Qin MH, Li XH, Atkinson MA, Clark AJ, Rajagopalan M, Madiraju MV.

Proc Natl Acad Sci U S A. 1996 Dec 10;93(25):14468-73.

33.
34.

Mycobacterium smegmatis dnaA region and autonomous replication activity.

Rajagopalan M, Qin MH, Nash DR, Madiraju MV.

J Bacteriol. 1995 Nov;177(22):6527-35.

35.

Amplification and cloning of the Mycobacterium tuberculosis dnaA gene.

Rajagopalan M, Qin MH, Steingrube VA, Nash DR, Wallace RJ Jr, Madiraju MV.

Gene. 1995 Sep 22;163(1):75-9.

PMID:
7557482
36.

A rapid protocol for isolation of RNA from mycobacteria.

Rajagopalan M, Boggaram V, Madiraju MV.

Lett Appl Microbiol. 1995 Jul;21(1):14-7.

PMID:
7544986
37.

recO and recR mutations delay induction of the SOS response in Escherichia coli.

Hegde S, Sandler SJ, Clark AJ, Madiraju MV.

Mol Gen Genet. 1995 Jan 20;246(2):254-8.

PMID:
7862097
38.
39.

Enzymatic properties of the RecA803 protein, a partial suppressor of recF mutations.

Madiraju MV, Lavery PE, Kowalczykowski SC, Clark AJ.

Biochemistry. 1992 Nov 3;31(43):10529-35.

PMID:
1420169
40.

Effect of RecF protein on reactions catalyzed by RecA protein.

Madiraju MV, Clark AJ.

Nucleic Acids Res. 1991 Nov 25;19(22):6295-300.

41.
43.
45.

The major protein of bull seminal plasma is a secretory product of seminal vesicle.

Kemme M, Madiraju MV, Krauhs E, Zimmer M, Scheit KH.

Biochim Biophys Acta. 1986 Nov 19;884(2):282-90.

PMID:
2429707
46.
47.

Characterization of basic proteins of bull seminal plasma.

Kemme M, Theil R, Madiraju MV, Scheit S, Scheit KH.

Hoppe Seylers Z Physiol Chem. 1984 Oct;365(10):1173-81.

PMID:
6440848

Supplemental Content

Loading ...
Support Center