Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 37

1.

The effect of fasting and body reserves on cold tolerance in 2 pit-building insect predators.

Scharf I, Daniel A, MacMillan HA, Katz N.

Curr Zool. 2017 Jun;63(3):287-294. doi: 10.1093/cz/zow049. Epub 2016 May 9.

2.

Functional plasticity of the gut and the Malpighian tubules underlies cold acclimation and mitigates cold-induced hyperkalemia in Drosophila melanogaster.

Yerushalmi GY, Misyura L, MacMillan HA, Donini A.

J Exp Biol. 2018 Mar 19;221(Pt 6). pii: jeb174904. doi: 10.1242/jeb.174904.

PMID:
29367271
3.

Cold tolerance of Drosophila species is tightly linked to the epithelial K+ transport capacity of the Malpighian tubules and rectal pads.

Andersen MK, MacMillan HA, Donini A, Overgaard J.

J Exp Biol. 2017 Nov 15;220(Pt 22):4261-4269. doi: 10.1242/jeb.168518. Epub 2017 Sep 25.

4.

Thermal acclimation mitigates cold-induced paracellular leak from the Drosophila gut.

MacMillan HA, Yerushalmi GY, Jonusaite S, Kelly SP, Donini A.

Sci Rep. 2017 Aug 18;7(1):8807. doi: 10.1038/s41598-017-08926-7.

5.

Paralysis and heart failure precede ion balance disruption in heat-stressed European green crabs.

Jørgensen LB, Overgaard J, MacMillan HA.

J Therm Biol. 2017 Aug;68(Pt B):186-194. doi: 10.1016/j.jtherbio.2016.08.001. Epub 2016 Aug 2.

PMID:
28797479
6.

Heat stress is associated with disruption of ion balance in the migratory locust, Locusta migratoria.

O'Sullivan JDB, MacMillan HA, Overgaard J.

J Therm Biol. 2017 Aug;68(Pt B):177-185. doi: 10.1016/j.jtherbio.2016.04.001. Epub 2016 Apr 7.

PMID:
28797478
7.

A critical test of Drosophila anaesthetics: Isoflurane and sevoflurane are benign alternatives to cold and CO2.

MacMillan HA, Nørgård M, MacLean HJ, Overgaard J, Williams CJA.

J Insect Physiol. 2017 Aug;101:97-106. doi: 10.1016/j.jinsphys.2017.07.005. Epub 2017 Jul 18.

PMID:
28733237
8.

Cold mortality is not caused by oxygen limitation or loss of ion homeostasis in the tropical freshwater shrimp Macrobrachium rosenbergii.

Jørgensen LB, MacMillan HA, Overgaard J.

Cryobiology. 2017 Jun;76:146-149. doi: 10.1016/j.cryobiol.2017.04.011. Epub 2017 Apr 28.

PMID:
28461222
9.

Cold acclimation improves chill tolerance in the migratory locust through preservation of ion balance and membrane potential.

Andersen MK, Folkersen R, MacMillan HA, Overgaard J.

J Exp Biol. 2017 Feb 1;220(Pt 3):487-496. doi: 10.1242/jeb.150813. Epub 2016 Nov 30.

10.

The Integrative Physiology of Insect Chill Tolerance.

Overgaard J, MacMillan HA.

Annu Rev Physiol. 2017 Feb 10;79:187-208. doi: 10.1146/annurev-physiol-022516-034142. Epub 2016 Nov 16. Review.

PMID:
27860831
11.

Chronic dietary salt stress mitigates hyperkalemia and facilitates chill coma recovery in Drosophila melanogaster.

Yerushalmi GY, Misyura L, Donini A, MacMillan HA.

J Insect Physiol. 2016 Dec;95:89-97. doi: 10.1016/j.jinsphys.2016.09.006. Epub 2016 Sep 15.

PMID:
27642001
12.

Cold acclimation wholly reorganizes the Drosophila melanogaster transcriptome and metabolome.

MacMillan HA, Knee JM, Dennis AB, Udaka H, Marshall KE, Merritt TJ, Sinclair BJ.

Sci Rep. 2016 Jun 30;6:28999. doi: 10.1038/srep28999.

13.

Hemolymph metabolites and osmolality are tightly linked to cold tolerance of Drosophila species: a comparative study.

Olsson T, MacMillan HA, Nyberg N, Staerk D, Malmendal A, Overgaard J.

J Exp Biol. 2016 Aug 15;219(Pt 16):2504-13. doi: 10.1242/jeb.140152. Epub 2016 Jun 15.

14.

Preservation of potassium balance is strongly associated with insect cold tolerance in the field: a seasonal study of Drosophila subobscura.

MacMillan HA, Schou MF, Kristensen TN, Overgaard J.

Biol Lett. 2016 May;12(5). pii: 20160123. doi: 10.1098/rsbl.2016.0123.

15.

The negative effect of starvation and the positive effect of mild thermal stress on thermal tolerance of the red flour beetle, Tribolium castaneum.

Scharf I, Wexler Y, MacMillan HA, Presman S, Simson E, Rosenstein S.

Naturwissenschaften. 2016 Apr;103(3-4):20. doi: 10.1007/s00114-016-1344-5. Epub 2016 Feb 18.

PMID:
26888763
16.

The capacity to maintain ion and water homeostasis underlies interspecific variation in Drosophila cold tolerance.

MacMillan HA, Andersen JL, Davies SA, Overgaard J.

Sci Rep. 2015 Dec 18;5:18607. doi: 10.1038/srep18607.

17.

Concurrent effects of cold and hyperkalaemia cause insect chilling injury.

MacMillan HA, Baatrup E, Overgaard J.

Proc Biol Sci. 2015 Oct 22;282(1817):20151483. doi: 10.1098/rspb.2015.1483.

18.

Muscle membrane potential and insect chill coma.

Andersen JL, MacMillan HA, Overgaard J.

J Exp Biol. 2015 Aug;218(Pt 16):2492-5. doi: 10.1242/jeb.123760. Epub 2015 Jun 18.

19.

Temperate Drosophila preserve cardiac function at low temperature.

Andersen JL, MacMillan HA, Overgaard J.

J Insect Physiol. 2015 Jun;77:26-32. doi: 10.1016/j.jinsphys.2015.03.016. Epub 2015 Apr 11.

PMID:
25871726
20.

Chill-tolerant Gryllus crickets maintain ion balance at low temperatures.

Coello Alvarado LE, MacMillan HA, Sinclair BJ.

J Insect Physiol. 2015 Jun;77:15-25. doi: 10.1016/j.jinsphys.2015.03.015. Epub 2015 Apr 3.

PMID:
25846013
21.

Sodium distribution predicts the chill tolerance of Drosophila melanogaster raised in different thermal conditions.

MacMillan HA, Andersen JL, Loeschcke V, Overgaard J.

Am J Physiol Regul Integr Comp Physiol. 2015 May 15;308(10):R823-31. doi: 10.1152/ajpregu.00465.2014. Epub 2015 Mar 11.

22.

Parallel ionoregulatory adjustments underlie phenotypic plasticity and evolution of Drosophila cold tolerance.

MacMillan HA, Ferguson LV, Nicolai A, Donini A, Staples JF, Sinclair BJ.

J Exp Biol. 2015 Feb 1;218(Pt 3):423-32. doi: 10.1242/jeb.115790. Epub 2014 Dec 18.

23.

Cold-induced depolarization of insect muscle: differing roles of extracellular K+ during acute and chronic chilling.

MacMillan HA, Findsen A, Pedersen TH, Overgaard J.

J Exp Biol. 2014 Aug 15;217(Pt 16):2930-8. doi: 10.1242/jeb.107516. Epub 2014 Jun 4.

24.

A high-throughput method of hemolymph extraction from adult Drosophila without anesthesia.

MacMillan HA, Hughson BN.

J Insect Physiol. 2014 Apr;63:27-31. doi: 10.1016/j.jinsphys.2014.02.005. Epub 2014 Feb 21.

PMID:
24561358
25.

Static and dynamic approaches yield similar estimates of the thermal sensitivity of insect metabolism.

Lake SL, MacMillan HA, Williams CM, Sinclair BJ.

J Insect Physiol. 2013 Aug;59(8):761-6. doi: 10.1016/j.jinsphys.2013.04.010. Epub 2013 May 9.

PMID:
23665211
26.

Cross-tolerance and cross-talk in the cold: relating low temperatures to desiccation and immune stress in insects.

Sinclair BJ, Ferguson LV, Salehipour-shirazi G, MacMillan HA.

Integr Comp Biol. 2013 Oct;53(4):545-56. doi: 10.1093/icb/ict004. Epub 2013 Mar 21.

PMID:
23520401
27.

Real-time measurement of metabolic rate during freezing and thawing of the wood frog, Rana sylvatica: implications for overwinter energy use.

Sinclair BJ, Stinziano JR, Williams CM, Macmillan HA, Marshall KE, Storey KB.

J Exp Biol. 2013 Jan 15;216(Pt 2):292-302. doi: 10.1242/jeb.076331.

28.

Reestablishment of ion homeostasis during chill-coma recovery in the cricket Gryllus pennsylvanicus.

MacMillan HA, Williams CM, Staples JF, Sinclair BJ.

Proc Natl Acad Sci U S A. 2012 Dec 11;109(50):20750-5. doi: 10.1073/pnas.1212788109. Epub 2012 Nov 26.

29.

Thermal variability increases the impact of autumnal warming and drives metabolic depression in an overwintering butterfly.

Williams CM, Marshall KE, MacMillan HA, Dzurisin JD, Hellmann JJ, Sinclair BJ.

PLoS One. 2012;7(3):e34470. doi: 10.1371/journal.pone.0034470. Epub 2012 Mar 30.

30.

Metabolism and energy supply below the critical thermal minimum of a chill-susceptible insect.

Macmillan HA, Williams CM, Staples JF, Sinclair BJ.

J Exp Biol. 2012 Apr 15;215(Pt 8):1366-72. doi: 10.1242/jeb.066381.

31.

The relationship between chill-coma onset and recovery at the extremes of the thermal window of Drosophila melanogaster.

Ransberry VE, MacMillan HA, Sinclair BJ.

Physiol Biochem Zool. 2011 Nov-Dec;84(6):553-9. doi: 10.1086/662642. Epub 2011 Oct 14.

PMID:
22030848
32.

Triacylglyceride measurement in small quantities of homogenised insect tissue: comparisons and caveats.

Williams CM, Thomas RH, MacMillan HA, Marshall KE, Sinclair BJ.

J Insect Physiol. 2011 Dec;57(12):1602-13. doi: 10.1016/j.jinsphys.2011.08.008. Epub 2011 Aug 22.

PMID:
21878339
33.
34.

Mechanisms underlying insect chill-coma.

Macmillan HA, Sinclair BJ.

J Insect Physiol. 2011 Jan;57(1):12-20. doi: 10.1016/j.jinsphys.2010.10.004. Epub 2010 Oct 27. Review.

PMID:
20969872
35.

Rapid changes in desiccation resistance in Drosophila melanogaster are facilitated by changes in cuticular permeability.

Bazinet AL, Marshall KE, MacMillan HA, Williams CM, Sinclair BJ.

J Insect Physiol. 2010 Dec;56(12):2006-12. doi: 10.1016/j.jinsphys.2010.09.002. Epub 2010 Sep 29.

PMID:
20863831
36.

Membrane remodeling and glucose in Drosophila melanogaster: a test of rapid cold-hardening and chilling tolerance hypotheses.

MacMillan HA, Guglielmo CG, Sinclair BJ.

J Insect Physiol. 2009 Mar;55(3):243-9. doi: 10.1016/j.jinsphys.2008.11.015. Epub 2009 Jan 20.

PMID:
19111745
37.

Apical pneumonic scars.

MacMILLAN HA.

Arch Pathol (Chic). 1949 Nov;48(5):377-81. No abstract available.

PMID:
18143914

Supplemental Content

Loading ...
Support Center