Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 66

1.

The evolution of antibiotic resistance.

MacLean RC, San Millan A.

Science. 2019 Sep 13;365(6458):1082-1083. doi: 10.1126/science.aax3879. No abstract available.

PMID:
31515374
2.

Integrative analysis of fitness and metabolic effects of plasmids in Pseudomonas aeruginosa PAO1.

San Millan A, Toll-Riera M, Qi Q, Betts A, Hopkinson RJ, McCullagh J, MacLean RC.

ISME J. 2018 Dec;12(12):3014-3024. doi: 10.1038/s41396-018-0224-8. Epub 2018 Aug 10.

3.

High parasite diversity accelerates host adaptation and diversification.

Betts A, Gray C, Zelek M, MacLean RC, King KC.

Science. 2018 May 25;360(6391):907-911. doi: 10.1126/science.aam9974.

PMID:
29798882
4.

Testing the Role of Multicopy Plasmids in the Evolution of Antibiotic Resistance.

Escudero JA, MacLean RC, San Millan A.

J Vis Exp. 2018 May 2;(135). doi: 10.3791/57386.

PMID:
29781985
5.

Identifying and exploiting genes that potentiate the evolution of antibiotic resistance.

Gifford DR, Furió V, Papkou A, Vogwill T, Oliver A, MacLean RC.

Nat Ecol Evol. 2018 Jun;2(6):1033-1039. doi: 10.1038/s41559-018-0547-x. Epub 2018 Apr 23.

6.

Multicopy plasmids allow bacteria to escape from fitness trade-offs during evolutionary innovation.

Rodriguez-Beltran J, Hernandez-Beltran JCR, DelaFuente J, Escudero JA, Fuentes-Hernandez A, MacLean RC, Peña-Miller R, San Millan A.

Nat Ecol Evol. 2018 May;2(5):873-881. doi: 10.1038/s41559-018-0529-z. Epub 2018 Apr 9.

7.

Cooperation, competition and antibiotic resistance in bacterial colonies.

Frost I, Smith WPJ, Mitri S, Millan AS, Davit Y, Osborne JM, Pitt-Francis JM, MacLean RC, Foster KR.

ISME J. 2018 Jun;12(6):1582-1593. doi: 10.1038/s41396-018-0090-4. Epub 2018 Mar 21.

8.

Fitness Costs of Plasmids: a Limit to Plasmid Transmission.

San Millan A, MacLean RC.

Microbiol Spectr. 2017 Sep;5(5). doi: 10.1128/microbiolspec.MTBP-0016-2017. Review.

PMID:
28944751
9.

Multicopy plasmids potentiate the evolution of antibiotic resistance in bacteria.

San Millan A, Escudero JA, Gifford DR, Mazel D, MacLean RC.

Nat Ecol Evol. 2016 Nov 7;1(1):10. doi: 10.1038/s41559-016-0010.

PMID:
28812563
10.

Divergent evolution peaks under intermediate population bottlenecks during bacterial experimental evolution.

Vogwill T, Phillips RL, Gifford DR, MacLean RC.

Proc Biol Sci. 2016 Jul 27;283(1835). pii: 20160749. doi: 10.1098/rspb.2016.0749.

11.

Epistatic interactions between ancestral genotype and beneficial mutations shape evolvability in Pseudomonas aeruginosa.

Gifford DR, Toll-Riera M, MacLean RC.

Evolution. 2016 Jul;70(7):1659-66. doi: 10.1111/evo.12958. Epub 2016 Jun 15.

PMID:
27230588
12.

Epistasis between antibiotic resistance mutations and genetic background shape the fitness effect of resistance across species of Pseudomonas.

Vogwill T, Kojadinovic M, MacLean RC.

Proc Biol Sci. 2016 May 11;283(1830). pii: 20160151. doi: 10.1098/rspb.2016.0151.

13.

The Genomic Basis of Evolutionary Innovation in Pseudomonas aeruginosa.

Toll-Riera M, San Millan A, Wagner A, MacLean RC.

PLoS Genet. 2016 May 5;12(5):e1006005. doi: 10.1371/journal.pgen.1006005. eCollection 2016 May.

14.

Epistasis buffers the fitness effects of rifampicin-resistance mutations in Pseudomonas aeruginosa.

Hall AR, MacLean RC.

Evolution. 2016 May;70(5):1161. doi: 10.1111/evo.12918. Epub 2016 Apr 22. No abstract available.

PMID:
27061837
15.

Parasite diversity drives rapid host dynamics and evolution of resistance in a bacteria-phage system.

Betts A, Gifford DR, MacLean RC, King KC.

Evolution. 2016 May;70(5):969-78. doi: 10.1111/evo.12909. Epub 2016 Apr 19.

16.

Persistence and resistance as complementary bacterial adaptations to antibiotics.

Vogwill T, Comfort AC, Furió V, MacLean RC.

J Evol Biol. 2016 Jun;29(6):1223-33. doi: 10.1111/jeb.12864. Epub 2016 Apr 6.

17.

Environmental variation alters the fitness effects of rifampicin resistance mutations in Pseudomonas aeruginosa.

Gifford DR, Moss E, MacLean RC.

Evolution. 2016 Mar;70(3):725-30. doi: 10.1111/evo.12880. Epub 2016 Mar 2.

PMID:
26880677
18.

The genomic basis of adaptation to the fitness cost of rifampicin resistance in Pseudomonas aeruginosa.

Qi Q, Toll-Riera M, Heilbron K, Preston GM, MacLean RC.

Proc Biol Sci. 2016 Jan 13;283(1822). pii: 20152452. doi: 10.1098/rspb.2015.2452.

19.

The SOS response increases bacterial fitness, but not evolvability, under a sublethal dose of antibiotic.

Torres-Barceló C, Kojadinovic M, Moxon R, MacLean RC.

Proc Biol Sci. 2015 Oct 7;282(1816):20150885. doi: 10.1098/rspb.2015.0885.

20.

Evaluating the effect of horizontal transmission on the stability of plasmids under different selection regimes.

Peña-Miller R, Rodríguez-González R, MacLean RC, San Millan A.

Mob Genet Elements. 2015 May 21;5(3):1-5. eCollection 2015 May-Jun.

21.

Microbial Evolution: Towards Resolving the Plasmid Paradox.

MacLean RC, San Millan A.

Curr Biol. 2015 Aug 31;25(17):R764-7. doi: 10.1016/j.cub.2015.07.006.

22.

Sequencing of plasmids pAMBL1 and pAMBL2 from Pseudomonas aeruginosa reveals a blaVIM-1 amplification causing high-level carbapenem resistance.

San Millan A, Toll-Riera M, Escudero JA, Cantón R, Coque TM, MacLean RC.

J Antimicrob Chemother. 2015 Nov;70(11):3000-3. doi: 10.1093/jac/dkv222. Epub 2015 Jul 24.

23.

Here's to the losers: evolvable residents accelerate the evolution of high-fitness invaders.

Gifford DR, Toll-Riera M, Kojadinovic M, MacLean RC.

Am Nat. 2015 Jul;186(1):41-9. doi: 10.1086/681598. Epub 2015 May 12.

24.

Interactions between horizontally acquired genes create a fitness cost in Pseudomonas aeruginosa.

San Millan A, Toll-Riera M, Qi Q, MacLean RC.

Nat Commun. 2015 Apr 21;6:6845. doi: 10.1038/ncomms7845.

25.

The genetic basis of the fitness costs of antimicrobial resistance: a meta-analysis approach.

Vogwill T, MacLean RC.

Evol Appl. 2015 Mar;8(3):284-95. doi: 10.1111/eva.12202. Epub 2014 Dec 12.

26.

Limits to compensatory adaptation and the persistence of antibiotic resistance in pathogenic bacteria.

MacLean RC, Vogwill T.

Evol Med Public Health. 2014 Dec 21;2015(1):4-12. doi: 10.1093/emph/eou032. Review.

27.
28.

Positive selection and compensatory adaptation interact to stabilize non-transmissible plasmids.

San Millan A, Peña-Miller R, Toll-Riera M, Halbert ZV, McLean AR, Cooper BS, MacLean RC.

Nat Commun. 2014 Oct 10;5:5208. doi: 10.1038/ncomms6208.

29.

Testing the role of genetic background in parallel evolution using the comparative experimental evolution of antibiotic resistance.

Vogwill T, Kojadinovic M, Furió V, MacLean RC.

Mol Biol Evol. 2014 Dec;31(12):3314-23. doi: 10.1093/molbev/msu262. Epub 2014 Sep 16.

30.

Sex drives intracellular conflict in yeast.

Harrison E, MacLean RC, Koufopanou V, Burt A.

J Evol Biol. 2014 Aug;27(8):1757-63. doi: 10.1111/jeb.12408. Epub 2014 May 13.

31.

Fitness is strongly influenced by rare mutations of large effect in a microbial mutation accumulation experiment.

Heilbron K, Toll-Riera M, Kojadinovic M, MacLean RC.

Genetics. 2014 Jul;197(3):981-90. doi: 10.1534/genetics.114.163147. Epub 2014 May 8.

32.

Positive epistasis between co-infecting plasmids promotes plasmid survival in bacterial populations.

San Millan A, Heilbron K, MacLean RC.

ISME J. 2014 Mar;8(3):601-12. doi: 10.1038/ismej.2013.182. Epub 2013 Oct 24.

33.

Evolutionary reversals of antibiotic resistance in experimental populations of Pseudomonas aeruginosa.

Gifford DR, MacLean RC.

Evolution. 2013 Oct;67(10):2973-81. doi: 10.1111/evo.12158. Epub 2013 Jun 5.

PMID:
24094347
34.

A trade-off between oxidative stress resistance and DNA repair plays a role in the evolution of elevated mutation rates in bacteria.

Torres-Barceló C, Cabot G, Oliver A, Buckling A, Maclean RC.

Proc Biol Sci. 2013 Feb 27;280(1757):20130007. doi: 10.1098/rspb.2013.0007. Print 2013 Apr 22.

35.

Evaluating evolutionary models of stress-induced mutagenesis in bacteria.

MacLean RC, Torres-Barceló C, Moxon R.

Nat Rev Genet. 2013 Mar;14(3):221-7. doi: 10.1038/nrg3415. Epub 2013 Feb 12. Review.

PMID:
23400102
36.

The cost of copy number in a selfish genetic element: the 2-μm plasmid of Saccharomyces cerevisiae.

Harrison E, Koufopanou V, Burt A, MacLean RC.

J Evol Biol. 2012 Nov;25(11):2348-56. doi: 10.1111/j.1420-9101.2012.02610.x. Epub 2012 Sep 19.

37.

Epistasis buffers the fitness effects of rifampicin- resistance mutations in Pseudomonas aeruginosa.

Hall AR, MacLean RC.

Evolution. 2011 Aug;65(8):2370-9. doi: 10.1111/j.1558-5646.2011.01302.x. Epub 2011 May 10. Erratum in: Evolution. 2016 May;70(5):1161.

PMID:
21790582
38.

The fitness cost of rifampicin resistance in Pseudomonas aeruginosa depends on demand for RNA polymerase.

Hall AR, Iles JC, MacLean RC.

Genetics. 2011 Mar;187(3):817-22. doi: 10.1534/genetics.110.124628. Epub 2011 Jan 10.

39.

Diminishing returns from beneficial mutations and pervasive epistasis shape the fitness landscape for rifampicin resistance in Pseudomonas aeruginosa.

MacLean RC, Perron GG, Gardner A.

Genetics. 2010 Dec;186(4):1345-54. doi: 10.1534/genetics.110.123083. Epub 2010 Sep 27.

40.

A mixture of "cheats" and "co-operators" can enable maximal group benefit.

MaClean RC, Fuentes-Hernandez A, Greig D, Hurst LD, Gudelj I.

PLoS Biol. 2010 Sep 14;8(9). pii: e1000486. doi: 10.1371/journal.pbio.1000486.

41.

The evolution of antibiotic resistance: insight into the roles of molecular mechanisms of resistance and treatment context.

Maclean RC, Hall AR, Perron GG, Buckling A.

Discov Med. 2010 Aug;10(51):112-8. Review.

42.

Comparative analysis of myxococcus predation on soil bacteria.

Morgan AD, MacLean RC, Hillesland KL, Velicer GJ.

Appl Environ Microbiol. 2010 Oct;76(20):6920-7. doi: 10.1128/AEM.00414-10. Epub 2010 Aug 27.

43.

The population genetics of antibiotic resistance: integrating molecular mechanisms and treatment contexts.

MacLean RC, Hall AR, Perron GG, Buckling A.

Nat Rev Genet. 2010 Jun;11(6):405-14. doi: 10.1038/nrg2778. Review.

PMID:
20479772
44.

Dispersal scales up the biodiversity-productivity relationship in an experimental source-sink metacommunity.

Venail PA, Maclean RC, Meynard CN, Mouquet N.

Proc Biol Sci. 2010 Aug 7;277(1692):2339-45. doi: 10.1098/rspb.2009.2104. Epub 2010 Mar 24.

45.

Predicting epistasis: an experimental test of metabolic control theory with bacterial transcription and translation.

MacLean RC.

J Evol Biol. 2010 Mar;23(3):488-93. doi: 10.1111/j.1420-9101.2009.01888.x. Epub 2010 Jan 7.

46.

Mutational neighbourhood and mutation supply rate constrain adaptation in Pseudomonas aeruginosa.

Hall AR, Griffiths VF, MacLean RC, Colegrave N.

Proc Biol Sci. 2010 Feb 22;277(1681):643-50. doi: 10.1098/rspb.2009.1630. Epub 2009 Nov 4.

47.

The cost of multiple drug resistance in Pseudomonas aeruginosa.

Ward H, Perron GG, Maclean RC.

J Evol Biol. 2009 May;22(5):997-1003. doi: 10.1111/j.1420-9101.2009.01712.x. Epub 2009 Feb 27.

48.

The distribution of fitness effects of beneficial mutations in Pseudomonas aeruginosa.

MacLean RC, Buckling A.

PLoS Genet. 2009 Mar;5(3):e1000406. doi: 10.1371/journal.pgen.1000406. Epub 2009 Mar 6.

49.

Experimental adaptive radiation in Pseudomonas.

MacLean RC, Bell G.

Am Nat. 2002 Nov;160(5):569-81. doi: 10.1086/342816.

PMID:
18707508
50.

Supplemental Content

Loading ...
Support Center