Format

Send to

Choose Destination
Sci Adv. 2015 Dec 18;1(11):e1501095. doi: 10.1126/sciadv.1501095. eCollection 2015 Dec.

Active quantum plasmonics.

Author information

1
Institut des Sciences Moléculaires d'Orsay, UMR 8214, CNRS, Université Paris Sud, Bâtiment 351, 91405 Orsay Cedex, France.
2
Institut des Sciences Moléculaires d'Orsay, UMR 8214, CNRS, Université Paris Sud, Bâtiment 351, 91405 Orsay Cedex, France.; Materials Physics Center, Consejo Superior de Investigaciones Científicas-Universidad del País Vasco/Euskal Herriko Unibertsitatea and Donostia International Physics Center, Paseo Manuel de Lardizabal 5, 20018 Donostia-San Sebastián, Spain.; Departamento de Física, Universidad de los Andes, 111711 Bogotá, Colombia.
3
MS61, Laboratory for Nanophotonics, Department of Physics, Rice University, Houston, TX 77005, USA.
4
Donostia International Physics Center, Paseo Manuel de Lardizabal 4, 20018 Donostia-San Sebastián, Spain.; IKERBASQUE, Basque Foundation for Science, E-48011 Bilbao, Spain.
5
Donostia International Physics Center, Paseo Manuel de Lardizabal 4, 20018 Donostia-San Sebastián, Spain.
6
Materials Physics Center, Consejo Superior de Investigaciones Científicas-Universidad del País Vasco/Euskal Herriko Unibertsitatea and Donostia International Physics Center, Paseo Manuel de Lardizabal 5, 20018 Donostia-San Sebastián, Spain.

Abstract

The ability of localized surface plasmons to squeeze light and engineer nanoscale electromagnetic fields through electron-photon coupling at dimensions below the wavelength has turned plasmonics into a driving tool in a variety of technological applications, targeting novel and more efficient optoelectronic processes. In this context, the development of active control of plasmon excitations is a major fundamental and practical challenge. We propose a mechanism for fast and active control of the optical response of metallic nanostructures based on exploiting quantum effects in subnanometric plasmonic gaps. By applying an external dc bias across a narrow gap, a substantial change in the tunneling conductance across the junction can be induced at optical frequencies, which modifies the plasmonic resonances of the system in a reversible manner. We demonstrate the feasibility of the concept using time-dependent density functional theory calculations. Thus, along with two-dimensional structures, metal nanoparticle plasmonics can benefit from the reversibility, fast response time, and versatility of an active control strategy based on applied bias. The proposed electrical manipulation of light using quantum plasmonics establishes a new platform for many practical applications in optoelectronics.

KEYWORDS:

Physics; Plasmonics; Quantum plasmonics; applied optoelectronics

Supplemental Content

Full text links

Icon for PubMed Central
Loading ...
Support Center