Format

Send to

Choose Destination
Sci Transl Med. 2020 Feb 12;12(530). pii: eaay4447. doi: 10.1126/scitranslmed.aay4447.

JAK inhibition increases bone mass in steady-state conditions and ameliorates pathological bone loss by stimulating osteoblast function.

Author information

1
Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Internal Medicine 3-Rheumatology and Immunology, Universitätsklinikum Erlangen, Erlangen, Germany.
2
Deutsches Zentrum für Immuntherapie (DZI), Erlangen, Germany.
3
Nikolaus Fiebiger Center of Molecular Medicine, Universitätsklinikum Erlangen and Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany.
4
Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Internal Medicine 3-Rheumatology and Immunology, Universitätsklinikum Erlangen, Erlangen, Germany. silke.frey@uk-erlangen.de.

Abstract

Janus kinase (JAK)-mediated cytokine signaling has emerged as an important therapeutic target for the treatment of inflammatory diseases such as rheumatoid arthritis (RA). Accordingly, JAK inhibitors compose a new class of drugs, among which tofacitinib and baricitinib have been approved for the treatment of RA. Periarticular bone erosions contribute considerably to the pathogenesis of RA. However, although the immunomodulatory aspect of JAK inhibition (JAKi) is well defined, the current knowledge of how JAKi influences bone homeostasis is limited. Here, we assessed the effects of the JAK inhibitors tofacitinib and baricitinib on bone phenotype (i) in mice during steady-state conditions or in mice with bone loss induced by (ii) estrogen-deficiency (ovariectomy) or (iii) inflammation (arthritis) to evaluate whether effects of JAKi on bone metabolism require noninflammatory/inflammatory challenge. In all three models, JAKi increased bone mass, consistent with reducing the ratio of receptor activator of NF-κB ligand/osteoprotegerin in serum. In vitro, effects of tofacitinib and baricitinib on osteoclast and osteoblast differentiation were analyzed. JAKi significantly increased osteoblast function (P < 0.05) but showed no direct effects on osteoclasts. Additionally, mRNA sequencing and ingenuity pathway analyses were performed in osteoblasts exposed to JAKi and revealed robust up-regulation of markers for osteoblast function, such as osteocalcin and Wnt signaling. The anabolic effect of JAKi was illustrated by the stabilization of β-catenin. In humans with RA, JAKi induced bone-anabolic effects as evidenced by repair of arthritic bone erosions. Results support that JAKi is a potent therapeutic tool for increasing osteoblast function and bone formation.

Supplemental Content

Full text links

Icon for HighWire
Loading ...
Support Center