Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 146

1.

Advanced age promotes colonic dysfunction and gut-derived lung infection after stroke.

Wen SW, Shim R, Ho L, Wanrooy BJ, Srikhanta YN, Prame Kumar K, Nicholls AJ, Shen SJ, Sepehrizadeh T, de Veer M, Srikanth VK, Ma H, Phan TG, Lyras D, Wong CHY.

Aging Cell. 2019 Jun 14:e12980. doi: 10.1111/acel.12980. [Epub ahead of print]

2.

Clostridial Genetics: Genetic Manipulation of the Pathogenic Clostridia.

Kuehne SA, Rood JI, Lyras D.

Microbiol Spectr. 2019 May;7(3). doi: 10.1128/microbiolspec.GPP3-0040-2018.

PMID:
31172914
3.

Tranexamic acid influences the immune response, but not bacterial clearance in a model of post-traumatic brain injury pneumonia.

Draxler DF, Awad MM, Hanafi G, Daglas M, Ho H, Keragala CB, Galle A, Roquilly A, Lyras D, Sashindranath M, Medcalf RL.

J Neurotrauma. 2019 May 29. doi: 10.1089/neu.2018.6030. [Epub ahead of print]

PMID:
31140372
4.

Identification and characterization of β-aminopeptidases - insight into enzymes without a known natural substrate.

John-White M, Gardiner J, Johanesen P, Lyras D, Dumsday G.

Appl Environ Microbiol. 2019 May 24. pii: AEM.00318-19. doi: 10.1128/AEM.00318-19. [Epub ahead of print]

PMID:
31126950
5.

Enterotoxic Clostridia: Clostridioides difficile Infections.

Mileto S, Das A, Lyras D.

Microbiol Spectr. 2019 May;7(3). doi: 10.1128/microbiolspec.GPP3-0015-2018.

PMID:
31124432
6.

Virulence Plasmids of the Pathogenic Clostridia.

Revitt-Mills SA, Vidor CJ, Watts TD, Lyras D, Rood JI, Adams V.

Microbiol Spectr. 2019 May;7(3). doi: 10.1128/microbiolspec.GPP3-0034-2018.

PMID:
31111816
7.

Status of vaccine research and development for Clostridium difficile.

Riley TV, Lyras D, Douce GR.

Vaccine. 2019 Mar 19. pii: S0264-410X(19)30259-2. doi: 10.1016/j.vaccine.2019.02.052. [Epub ahead of print]

PMID:
30902484
8.

Cationic biaryl 1,2,3-triazolyl peptidomimetic amphiphiles targeting Clostridioides (Clostridium) difficile: Synthesis, antibacterial evaluation and an in vivo C. difficile infection model.

Tague AJ, Putsathit P, Hutton ML, Hammer KA, Wales SM, Knight DR, Riley TV, Lyras D, Keller PA, Pyne SG.

Eur J Med Chem. 2019 May 15;170:203-224. doi: 10.1016/j.ejmech.2019.02.068. Epub 2019 Mar 1.

PMID:
30901686
9.
10.

pCP13, a representative of a new family of conjugative toxin plasmids in Clostridium perfringens.

Watts TD, Vidor CJ, Awad MM, Lyras D, Rood JI, Adams V.

Plasmid. 2019 Mar;102:37-45. doi: 10.1016/j.plasmid.2019.02.002. Epub 2019 Feb 18.

PMID:
30790588
11.

In silico Identification of Novel Toxin Homologs and Associated Mobile Genetic Elements in Clostridium perfringens.

Lacey JA, Johanesen PA, Lyras D, Moore RJ.

Pathogens. 2019 Jan 29;8(1). pii: E16. doi: 10.3390/pathogens8010016.

12.

Lectin Activity of the TcdA and TcdB Toxins of Clostridium difficile.

Hartley-Tassell LE, Awad MM, Seib KL, Scarselli M, Savino S, Tiralongo J, Lyras D, Day CJ, Jennings MP.

Infect Immun. 2019 Feb 21;87(3). pii: e00676-18. doi: 10.1128/IAI.00676-18. Print 2019 Mar.

13.

Clostridium difficile toxins induce VEGF-A and vascular permeability to promote disease pathogenesis.

Huang J, Kelly CP, Bakirtzi K, Villafuerte Gálvez JA, Lyras D, Mileto SJ, Larcombe S, Xu H, Yang X, Shields KS, Zhu W, Zhang Y, Goldsmith JD, Patel IJ, Hansen J, Huang M, Yla-Herttuala S, Moss AC, Paredes-Sabja D, Pothoulakis C, Shah YM, Wang J, Chen X.

Nat Microbiol. 2019 Feb;4(2):269-279. doi: 10.1038/s41564-018-0300-x. Epub 2018 Dec 3.

PMID:
30510170
14.

A series of three cases of severe Clostridium difficile infection in Australia associated with a binary toxin producing clade 2 ribotype 251 strain.

Wehrhahn MC, Keighley C, Kurtovic J, Knight DR, Hong S, Hutton ML, Lyras D, Wang Q, Leong R, Borody T, Edye M, Riley TV.

Anaerobe. 2019 Feb;55:117-123. doi: 10.1016/j.anaerobe.2018.11.009. Epub 2018 Nov 27.

PMID:
30500477
15.

Clostridium perfringens-mediated necrotic enteritis is not influenced by the pre-existing microbiota but is promoted by large changes in the post-challenge microbiota.

Lacey JA, Stanley D, Keyburn AL, Ford M, Chen H, Johanesen P, Lyras D, Moore RJ.

Vet Microbiol. 2018 Dec;227:119-126. doi: 10.1016/j.vetmic.2018.10.022. Epub 2018 Nov 1.

PMID:
30473341
16.

Hyperimmune bovine colostrum reduces gastrointestinal carriage of uropathogenic Escherichia coli.

Larcombe S, Hutton ML, Lyras D.

Hum Vaccin Immunother. 2019;15(2):508-513. doi: 10.1080/21645515.2018.1528836. Epub 2018 Oct 31.

PMID:
30277834
17.

Antibacterial activity of rhodomyrtone on Clostridium difficile vegetative cells and spores in vitro.

Srisuwan S, Mackin KE, Hocking D, Lyras D, Bennett-Wood V, Voravuthikunchai SP, Robins-Browne RM.

Int J Antimicrob Agents. 2018 Nov;52(5):724-729. doi: 10.1016/j.ijantimicag.2018.08.014. Epub 2018 Aug 24.

PMID:
30145248
18.

Antibiotic resistance plasmids and mobile genetic elements of Clostridium perfringens.

Adams V, Han X, Lyras D, Rood JI.

Plasmid. 2018 Sep;99:32-39. doi: 10.1016/j.plasmid.2018.07.002. Epub 2018 Jul 26. Review.

PMID:
30055188
19.

Diverse bacterial species contribute to antibiotic-associated diarrhoea and gastrointestinal damage.

Larcombe S, Hutton ML, Riley TV, Abud HE, Lyras D.

J Infect. 2018 Nov;77(5):417-426. doi: 10.1016/j.jinf.2018.06.006. Epub 2018 Jun 30.

PMID:
29964142
20.

Communication Ambassadors-an Australian Social Media Initiative to Develop Communication Skills in Early Career Scientists.

Wang JTH, Power CJ, Kahler CM, Lyras D, Young PR, Iredell J, Robins-Browne R.

J Microbiol Biol Educ. 2018 Mar 30;19(1). pii: 19.1.25. doi: 10.1128/jmbe.v19i1.1428. eCollection 2018.

21.

Expansion of the Clostridium perfringens toxin-based typing scheme.

Rood JI, Adams V, Lacey J, Lyras D, McClane BA, Melville SB, Moore RJ, Popoff MR, Sarker MR, Songer JG, Uzal FA, Van Immerseel F.

Anaerobe. 2018 Oct;53:5-10. doi: 10.1016/j.anaerobe.2018.04.011. Epub 2018 Apr 20. Review.

PMID:
29866424
22.

Whole genome analysis reveals the diversity and evolutionary relationships between necrotic enteritis-causing strains of Clostridium perfringens.

Lacey JA, Allnutt TR, Vezina B, Van TTH, Stent T, Han X, Rood JI, Wade B, Keyburn AL, Seemann T, Chen H, Haring V, Johanesen PA, Lyras D, Moore RJ.

BMC Genomics. 2018 May 22;19(1):379. doi: 10.1186/s12864-018-4771-1.

23.

Identification of large cryptic plasmids in Clostridioides (Clostridium) difficile.

Amy J, Bulach D, Knight D, Riley T, Johanesen P, Lyras D.

Plasmid. 2018 Mar - May;96-97:25-38. doi: 10.1016/j.plasmid.2018.04.001. Epub 2018 Apr 25.

PMID:
29702124
24.

Clostridium sordellii outer spore proteins maintain spore structural integrity and promote bacterial clearance from the gastrointestinal tract.

Rabi R, Larcombe S, Mathias R, McGowan S, Awad M, Lyras D.

PLoS Pathog. 2018 Apr 18;14(4):e1007004. doi: 10.1371/journal.ppat.1007004. eCollection 2018 Apr.

25.

Intestinal Colonization Traits of Pandemic Multidrug-Resistant Escherichia coli ST131.

Sarkar S, Hutton ML, Vagenas D, Ruter R, Schüller S, Lyras D, Schembri MA, Totsika M.

J Infect Dis. 2018 Aug 14;218(6):979-990. doi: 10.1093/infdis/jiy031.

26.

Clostridium sordellii Pathogenicity Locus Plasmid pCS1-1 Encodes a Novel Clostridial Conjugation Locus.

Vidor CJ, Watts TD, Adams V, Bulach D, Couchman E, Rood JI, Fairweather NF, Awad M, Lyras D.

MBio. 2018 Jan 16;9(1). pii: e01761-17. doi: 10.1128/mBio.01761-17.

28.

Conjugation-Mediated Horizontal Gene Transfer of Clostridium perfringens Plasmids in the Chicken Gastrointestinal Tract Results in the Formation of New Virulent Strains.

Lacey JA, Keyburn AL, Ford ME, Portela RW, Johanesen PA, Lyras D, Moore RJ.

Appl Environ Microbiol. 2017 Dec 1;83(24). pii: e01814-17. doi: 10.1128/AEM.01814-17. Print 2017 Dec 15.

29.

Structural Characterization of Clostridium sordellii Spores of Diverse Human, Animal, and Environmental Origin and Comparison to Clostridium difficile Spores.

Rabi R, Turnbull L, Whitchurch CB, Awad M, Lyras D.

mSphere. 2017 Oct 4;2(5). pii: e00343-17. doi: 10.1128/mSphere.00343-17. eCollection 2017 Sep-Oct.

30.

Crystal structure of a β-aminopeptidase from an Australian Burkholderia sp.

John-White M, Dumsday GJ, Johanesen P, Lyras D, Drinkwater N, McGowan S.

Acta Crystallogr F Struct Biol Commun. 2017 Jul 1;73(Pt 7):386-392. doi: 10.1107/S2053230X17007737. Epub 2017 Jun 17.

PMID:
28695846
31.

Bovine antibodies targeting primary and recurrent Clostridium difficile disease are a potent antibiotic alternative.

Hutton ML, Cunningham BA, Mackin KE, Lyon SA, James ML, Rood JI, Lyras D.

Sci Rep. 2017 Jun 16;7(1):3665. doi: 10.1038/s41598-017-03982-5.

32.

Evidence that compatibility of closely related replicons in Clostridium perfringens depends on linkage to parMRC-like partitioning systems of different subfamilies.

Watts TD, Johanesen PA, Lyras D, Rood JI, Adams V.

Plasmid. 2017 May;91:68-75. doi: 10.1016/j.plasmid.2017.03.008. Epub 2017 Apr 6.

PMID:
28390955
33.

X-ray crystal structure of cytochrome P450 monooxygenase CYP101J2 from Sphingobium yanoikuyae strain B2.

Unterweger B, Drinkwater N, Johanesen P, Lyras D, Dumsday GJ, McGowan S.

Proteins. 2017 May;85(5):945-950. doi: 10.1002/prot.25227. Epub 2017 Mar 3.

PMID:
27936485
34.

Options for improving effectiveness of rotavirus vaccines in developing countries.

Tissera MS, Cowley D, Bogdanovic-Sakran N, Hutton ML, Lyras D, Kirkwood CD, Buttery JP.

Hum Vaccin Immunother. 2017 Apr 3;13(4):921-927. doi: 10.1080/21645515.2016.1252493. Epub 2016 Nov 11. Review.

35.

Translocation and dissemination of commensal bacteria in post-stroke infection.

Stanley D, Mason LJ, Mackin KE, Srikhanta YN, Lyras D, Prakash MD, Nurgali K, Venegas A, Hill MD, Moore RJ, Wong CH.

Nat Med. 2016 Nov;22(11):1277-1284. doi: 10.1038/nm.4194. Epub 2016 Oct 3.

PMID:
27694934
36.

CYP101J2, CYP101J3, and CYP101J4, 1,8-Cineole-Hydroxylating Cytochrome P450 Monooxygenases from Sphingobium yanoikuyae Strain B2.

Unterweger B, Bulach DM, Scoble J, Midgley DJ, Greenfield P, Lyras D, Johanesen P, Dumsday GJ.

Appl Environ Microbiol. 2016 Oct 27;82(22):6507-6517. Print 2016 Nov 15.

37.

The binary toxin CDT enhances Clostridium difficile virulence by suppressing protective colonic eosinophilia.

Cowardin CA, Buonomo EL, Saleh MM, Wilson MG, Burgess SL, Kuehne SA, Schwan C, Eichhoff AM, Koch-Nolte F, Lyras D, Aktories K, Minton NP, Petri WA Jr.

Nat Microbiol. 2016 Jul 11;1(8):16108. doi: 10.1038/nmicrobiol.2016.108.

38.

Methods for Determining Transfer of Mobile Genetic Elements in Clostridium difficile.

Johanesen P, Lyras D.

Methods Mol Biol. 2016;1476:199-213. doi: 10.1007/978-1-4939-6361-4_15.

PMID:
27507343
39.

CdtR Regulates TcdA and TcdB Production in Clostridium difficile.

Lyon SA, Hutton ML, Rood JI, Cheung JK, Lyras D.

PLoS Pathog. 2016 Jul 14;12(7):e1005758. doi: 10.1371/journal.ppat.1005758. eCollection 2016 Jul.

40.

The Sialidase NanS Enhances Non-TcsL Mediated Cytotoxicity of Clostridium sordellii.

Awad MM, Singleton J, Lyras D.

Toxins (Basel). 2016 Jun 17;8(6). pii: E189. doi: 10.3390/toxins8060189.

41.

Temporal and Spatial Expression of TGF-b1 in the Early Phase of Patellar Tendon Healing after Application of Platelet Rich Plasma.

Lyras DN, Kazakos K, Tilkeridis K, Kokka A, Ververidis A, Botaitis S, Agrogiannis G.

Arch Bone Jt Surg. 2016 Apr;4(2):156-60.

43.

Functional analysis of an feoB mutant in Clostridium perfringens strain 13.

Awad MM, Cheung JK, Tan JE, McEwan AG, Lyras D, Rood JI.

Anaerobe. 2016 Oct;41:10-17. doi: 10.1016/j.anaerobe.2016.05.005. Epub 2016 May 10.

PMID:
27178230
44.

Clostridium difficile infection.

Smits WK, Lyras D, Lacy DB, Wilcox MH, Kuijper EJ.

Nat Rev Dis Primers. 2016 Apr 7;2:16020. doi: 10.1038/nrdp.2016.20. Review.

45.

Familial autoinflammation with neutrophilic dermatosis reveals a regulatory mechanism of pyrin activation.

Masters SL, Lagou V, Jéru I, Baker PJ, Van Eyck L, Parry DA, Lawless D, De Nardo D, Garcia-Perez JE, Dagley LF, Holley CL, Dooley J, Moghaddas F, Pasciuto E, Jeandel PY, Sciot R, Lyras D, Webb AI, Nicholson SE, De Somer L, van Nieuwenhove E, Ruuth-Praz J, Copin B, Cochet E, Medlej-Hashim M, Megarbane A, Schroder K, Savic S, Goris A, Amselem S, Wouters C, Liston A.

Sci Transl Med. 2016 Mar 30;8(332):332ra45. doi: 10.1126/scitranslmed.aaf1471.

46.

Genomic diversity of necrotic enteritis-associated strains of Clostridium perfringens: a review.

Lacey JA, Johanesen PA, Lyras D, Moore RJ.

Avian Pathol. 2016 Jun;45(3):302-7. doi: 10.1080/03079457.2016.1153799. Review.

PMID:
26949841
47.

Involvement of Bacteria Other Than Clostridium difficile in Antibiotic-Associated Diarrhoea.

Larcombe S, Hutton ML, Lyras D.

Trends Microbiol. 2016 Jun;24(6):463-476. doi: 10.1016/j.tim.2016.02.001. Epub 2016 Feb 17. Review.

PMID:
26897710
48.

Disruption of the Gut Microbiome: Clostridium difficile Infection and the Threat of Antibiotic Resistance.

Johanesen PA, Mackin KE, Hutton ML, Awad MM, Larcombe S, Amy JM, Lyras D.

Genes (Basel). 2015 Dec 21;6(4):1347-60. doi: 10.3390/genes6041347. Review.

49.

TcpM: a novel relaxase that mediates transfer of large conjugative plasmids from Clostridium perfringens.

Wisniewski JA, Traore DA, Bannam TL, Lyras D, Whisstock JC, Rood JI.

Mol Microbiol. 2016 Mar;99(5):884-96. doi: 10.1111/mmi.13270. Epub 2015 Dec 1.

50.

Necrotic Enteritis in Chickens Associated with Clostridium sordellii.

Rimoldi G, Uzal F, Chin RP, Palombo EA, Awad M, Lyras D, Shivaprasad HL.

Avian Dis. 2015 Sep;59(3):447-51.

PMID:
26478166

Supplemental Content

Support Center