Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 145

1.

Correction to: Multiple levers for overcoming the recalcitrance of lignocellulosic biomass.

Holwerda EK, Worthen RS, Kothari N, Lasky RC, Davison BH, Fu C, Wang ZY, Dixon RA, Biswal AK, Mohnen D, Nelson RS, Baxter HL, Mazarei M, Stewart CN Jr, Muchero W, Tuskan GA, Cai CM, Gjersing EE, Davis MF, Himmel ME, Wyman CE, Gilna P, Lynd LR.

Biotechnol Biofuels. 2019 Feb 9;12:25. doi: 10.1186/s13068-019-1363-5. eCollection 2019.

2.
3.

Multiple levers for overcoming the recalcitrance of lignocellulosic biomass.

Holwerda EK, Worthen RS, Kothari N, Lasky RC, Davison BH, Fu C, Wang ZY, Dixon RA, Biswal AK, Mohnen D, Nelson RS, Baxter HL, Mazarei M, Muchero W, Tuskan GA, Cai CM, Gjersing EE, Davis MF, Himmel ME, Wyman CE, Gilna P, Lynd LR.

Biotechnol Biofuels. 2019 Jan 17;12:15. doi: 10.1186/s13068-019-1353-7. eCollection 2019. Erratum in: Biotechnol Biofuels. 2019 Feb 9;12:25.

4.

Correction for Lo et al., "The Bifunctional Alcohol and Aldehyde Dehydrogenase Gene, adhE, Is Necessary for Ethanol Production in Clostridium thermocellum and Thermoanaerobacterium saccharolyticum".

Lo J, Zheng T, Hon S, Olson DG, Lynd LR.

J Bacteriol. 2018 Dec 7;201(1). pii: e00405-18. doi: 10.1128/JB.00405-18. Print 2019 Jan 1. No abstract available.

5.
6.

Rheological properties of corn stover slurries during fermentation by Clostridium thermocellum.

Ghosh S, Holwerda EK, Worthen RS, Lynd LR, Epps BP.

Biotechnol Biofuels. 2018 Sep 8;11:246. doi: 10.1186/s13068-018-1248-z. eCollection 2018.

7.

Development and characterization of stable anaerobic thermophilic methanogenic microbiomes fermenting switchgrass at decreasing residence times.

Liang X, Whitham JM, Holwerda EK, Shao X, Tian L, Wu YW, Lombard V, Henrissat B, Klingeman DM, Yang ZK, Podar M, Richard TL, Elkins JG, Brown SD, Lynd LR.

Biotechnol Biofuels. 2018 Sep 6;11:243. doi: 10.1186/s13068-018-1238-1. eCollection 2018.

8.

Expressing the Thermoanaerobacterium saccharolyticum pforA in engineered Clostridium thermocellum improves ethanol production.

Hon S, Holwerda EK, Worthen RS, Maloney MI, Tian L, Cui J, Lin PP, Lynd LR, Olson DG.

Biotechnol Biofuels. 2018 Sep 6;11:242. doi: 10.1186/s13068-018-1245-2. eCollection 2018.

9.

The redox-sensing protein Rex modulates ethanol production in Thermoanaerobacterium saccharolyticum.

Zheng T, Lanahan AA, Lynd LR, Olson DG.

PLoS One. 2018 Apr 5;13(4):e0195143. doi: 10.1371/journal.pone.0195143. eCollection 2018.

10.

Progress in understanding and overcoming biomass recalcitrance: a BioEnergy Science Center (BESC) perspective.

Gilna P, Lynd LR, Mohnen D, Davis MF, Davison BH.

Biotechnol Biofuels. 2017 Nov 30;10:285. doi: 10.1186/s13068-017-0971-1. eCollection 2017.

11.

Deletion of the hfsB gene increases ethanol production in Thermoanaerobacterium saccharolyticum and several other thermophilic anaerobic bacteria.

Eminoğlu A, Murphy SJ, Maloney M, Lanahan A, Giannone RJ, Hettich RL, Tripathi SA, Beldüz AO, Lynd LR, Olson DG.

Biotechnol Biofuels. 2017 Nov 30;10:282. doi: 10.1186/s13068-017-0968-9. eCollection 2017.

12.

Metabolome analysis reveals a role for glyceraldehyde 3-phosphate dehydrogenase in the inhibition of C. thermocellum by ethanol.

Tian L, Perot SJ, Stevenson D, Jacobson T, Lanahan AA, Amador-Noguez D, Olson DG, Lynd LR.

Biotechnol Biofuels. 2017 Nov 30;10:276. doi: 10.1186/s13068-017-0961-3. eCollection 2017.

13.

Expression of adhA from different organisms in Clostridium thermocellum.

Zheng T, Cui J, Bae HR, Lynd LR, Olson DG.

Biotechnol Biofuels. 2017 Nov 30;10:251. doi: 10.1186/s13068-017-0940-8. eCollection 2017.

14.

Lignocellulose deconstruction in the biosphere.

Bomble YJ, Lin CY, Amore A, Wei H, Holwerda EK, Ciesielski PN, Donohoe BS, Decker SR, Lynd LR, Himmel ME.

Curr Opin Chem Biol. 2017 Dec;41:61-70. doi: 10.1016/j.cbpa.2017.10.013. Epub 2017 Nov 2. Review.

PMID:
29100023
15.

The grand challenge of cellulosic biofuels.

Lynd LR.

Nat Biotechnol. 2017 Oct 11;35(10):912-915. doi: 10.1038/nbt.3976. No abstract available.

PMID:
29019992
16.

Enhanced ethanol formation by Clostridium thermocellum via pyruvate decarboxylase.

Tian L, Perot SJ, Hon S, Zhou J, Liang X, Bouvier JT, Guss AM, Olson DG, Lynd LR.

Microb Cell Fact. 2017 Oct 4;16(1):171. doi: 10.1186/s12934-017-0783-9.

17.

The ethanol pathway from Thermoanaerobacterium saccharolyticum improves ethanol production in Clostridium thermocellum.

Hon S, Olson DG, Holwerda EK, Lanahan AA, Murphy SJL, Maloney MI, Zheng T, Papanek B, Guss AM, Lynd LR.

Metab Eng. 2017 Jul;42:175-184. doi: 10.1016/j.ymben.2017.06.011. Epub 2017 Jun 27.

PMID:
28663138
18.

Cellulosic ethanol: status and innovation.

Lynd LR, Liang X, Biddy MJ, Allee A, Cai H, Foust T, Himmel ME, Laser MS, Wang M, Wyman CE.

Curr Opin Biotechnol. 2017 Jun;45:202-211. doi: 10.1016/j.copbio.2017.03.008. Epub 2017 May 18. Review.

PMID:
28528086
19.

Development of a core Clostridium thermocellum kinetic metabolic model consistent with multiple genetic perturbations.

Dash S, Khodayari A, Zhou J, Holwerda EK, Olson DG, Lynd LR, Maranas CD.

Biotechnol Biofuels. 2017 May 2;10:108. doi: 10.1186/s13068-017-0792-2. eCollection 2017.

20.

Determining the roles of the three alcohol dehydrogenases (AdhA, AdhB and AdhE) in Thermoanaerobacter ethanolicus during ethanol formation.

Zhou J, Shao X, Olson DG, Murphy SJ, Tian L, Lynd LR.

J Ind Microbiol Biotechnol. 2017 May;44(4-5):745-757. doi: 10.1007/s10295-016-1896-6. Epub 2017 Jan 11.

PMID:
28078513
21.

Engineering electron metabolism to increase ethanol production in Clostridium thermocellum.

Lo J, Olson DG, Murphy SJ, Tian L, Hon S, Lanahan A, Guss AM, Lynd LR.

Metab Eng. 2017 Jan;39:71-79. doi: 10.1016/j.ymben.2016.10.018. Epub 2016 Oct 28.

PMID:
27989806
22.

Glycolysis without pyruvate kinase in Clostridium thermocellum.

Olson DG, Hörl M, Fuhrer T, Cui J, Zhou J, Maloney MI, Amador-Noguez D, Tian L, Sauer U, Lynd LR.

Metab Eng. 2017 Jan;39:169-180. doi: 10.1016/j.ymben.2016.11.011. Epub 2016 Dec 1.

PMID:
27914869
23.

Both adhE and a Separate NADPH-Dependent Alcohol Dehydrogenase Gene, adhA, Are Necessary for High Ethanol Production in Thermoanaerobacterium saccharolyticum.

Zheng T, Olson DG, Murphy SJ, Shao X, Tian L, Lynd LR.

J Bacteriol. 2017 Jan 12;199(3). pii: e00542-16. doi: 10.1128/JB.00542-16. Print 2017 Feb 1.

24.

Ferredoxin:NAD+ Oxidoreductase of Thermoanaerobacterium saccharolyticum and Its Role in Ethanol Formation.

Tian L, Lo J, Shao X, Zheng T, Olson DG, Lynd LR.

Appl Environ Microbiol. 2016 Nov 21;82(24):7134-7141. Print 2016 Dec 15.

25.

Strain and bioprocess improvement of a thermophilic anaerobe for the production of ethanol from wood.

Herring CD, Kenealy WR, Joe Shaw A, Covalla SF, Olson DG, Zhang J, Ryan Sillers W, Tsakraklides V, Bardsley JS, Rogers SR, Thorne PG, Johnson JP, Foster A, Shikhare ID, Klingeman DM, Brown SD, Davison BH, Lynd LR, Hogsett DA.

Biotechnol Biofuels. 2016 Jun 16;9:125. doi: 10.1186/s13068-016-0536-8. eCollection 2016.

26.

Simultaneous achievement of high ethanol yield and titer in Clostridium thermocellum.

Tian L, Papanek B, Olson DG, Rydzak T, Holwerda EK, Zheng T, Zhou J, Maloney M, Jiang N, Giannone RJ, Hettich RL, Guss AM, Lynd LR.

Biotechnol Biofuels. 2016 Jun 2;9:116. doi: 10.1186/s13068-016-0528-8. eCollection 2016.

27.

Nicotinamide cofactor ratios in engineered strains of Clostridium thermocellum and Thermoanaerobacterium saccharolyticum.

Beri D, Olson DG, Holwerda EK, Lynd LR.

FEMS Microbiol Lett. 2016 Jun;363(11). pii: fnw091. doi: 10.1093/femsle/fnw091. Epub 2016 Apr 11.

PMID:
27190292
28.

A markerless gene deletion and integration system for Thermoanaerobacter ethanolicus.

Shao X, Zhou J, Olson DG, Lynd LR.

Biotechnol Biofuels. 2016 May 4;9:100. doi: 10.1186/s13068-016-0514-1. eCollection 2016.

29.

Development of a plasmid-based expression system in Clostridium thermocellum and its use to screen heterologous expression of bifunctional alcohol dehydrogenases (adhEs).

Hon S, Lanahan AA, Tian L, Giannone RJ, Hettich RL, Olson DG, Lynd LR.

Metab Eng Commun. 2016 Apr 22;3:120-129. doi: 10.1016/j.meteno.2016.04.001. eCollection 2016 Dec.

30.

Dramatic performance of Clostridium thermocellum explained by its wide range of cellulase modalities.

Xu Q, Resch MG, Podkaminer K, Yang S, Baker JO, Donohoe BS, Wilson C, Klingeman DM, Olson DG, Decker SR, Giannone RJ, Hettich RL, Brown SD, Lynd LR, Bayer EA, Himmel ME, Bomble YJ.

Sci Adv. 2016 Feb 5;2(2):e1501254. doi: 10.1126/sciadv.1501254. eCollection 2016 Feb.

31.

Promiscuous plasmid replication in thermophiles: Use of a novel hyperthermophilic replicon for genetic manipulation of Clostridium thermocellum at its optimum growth temperature.

Groom J, Chung D, Olson DG, Lynd LR, Guss AM, Westpheling J.

Metab Eng Commun. 2016 Jan 29;3:30-38. doi: 10.1016/j.meteno.2016.01.004. eCollection 2016 Dec.

32.

Clostridium thermocellum releases coumaric acid during degradation of untreated grasses by the action of an unknown enzyme.

Herring CD, Thorne PG, Lynd LR.

Appl Microbiol Biotechnol. 2016 Mar;100(6):2907-15. doi: 10.1007/s00253-016-7294-1. Epub 2016 Jan 14.

PMID:
26762388
33.

Biological lignocellulose solubilization: comparative evaluation of biocatalysts and enhancement via cotreatment.

Paye JM, Guseva A, Hammer SK, Gjersing E, Davis MF, Davison BH, Olstad J, Donohoe BS, Nguyen TY, Wyman CE, Pattathil S, Hahn MG, Lynd LR.

Biotechnol Biofuels. 2016 Jan 12;9:8. doi: 10.1186/s13068-015-0412-y. eCollection 2016.

34.

Elucidating central metabolic redox obstacles hindering ethanol production in Clostridium thermocellum.

Thompson RA, Layton DS, Guss AM, Olson DG, Lynd LR, Trinh CT.

Metab Eng. 2015 Nov;32:207-219. doi: 10.1016/j.ymben.2015.10.004. Epub 2015 Oct 21.

PMID:
26497628
35.

Correction for Lo et al., Deletion of nfnAB in Thermoanaerobacterium saccharolyticum and Its Effect on Metabolism.

Lo J, Zheng T, Olson DG, Ruppertsberger N, Tripathi SA, Tian L, Guss AM, Lynd LR.

J Bacteriol. 2015 Oct;197(20):3367. doi: 10.1128/JB.00688-15. No abstract available.

36.

Physiological roles of pyruvate ferredoxin oxidoreductase and pyruvate formate-lyase in Thermoanaerobacterium saccharolyticum JW/SL-YS485.

Zhou J, Olson DG, Lanahan AA, Tian L, Murphy SJ, Lo J, Lynd LR.

Biotechnol Biofuels. 2015 Sep 15;8:138. doi: 10.1186/s13068-015-0304-1. eCollection 2015.

37.

Three cellulosomal xylanase genes in Clostridium thermocellum are regulated by both vegetative SigA (σ(A)) and alternative SigI6 (σ(I6)) factors.

Sand A, Holwerda EK, Ruppertsberger NM, Maloney M, Olson DG, Nataf Y, Borovok I, Sonenshein AL, Bayer EA, Lamed R, Lynd LR, Shoham Y.

FEBS Lett. 2015 Oct 7;589(20 Pt B):3133-40. doi: 10.1016/j.febslet.2015.08.026. Epub 2015 Aug 29.

38.

Draft Genome Sequence of the Cellulolytic and Xylanolytic Thermophile Clostridium clariflavum Strain 4-2a.

Rooney EA, Rowe KT, Guseva A, Huntemann M, Han JK, Chen A, Kyrpides NC, Mavromatis K, Markowitz VM, Palaniappan K, Ivanova N, Pati A, Liolios K, Nordberg HP, Cantor MN, Hua SX, Shapiro N, Woyke T, Lynd LR, Izquierdo JA.

Genome Announc. 2015 Jul 23;3(4). pii: e00797-15. doi: 10.1128/genomeA.00797-15.

39.

Elimination of formate production in Clostridium thermocellum.

Rydzak T, Lynd LR, Guss AM.

J Ind Microbiol Biotechnol. 2015 Sep;42(9):1263-72. doi: 10.1007/s10295-015-1644-3. Epub 2015 Jul 11.

40.

Deletion of nfnAB in Thermoanaerobacterium saccharolyticum and Its Effect on Metabolism.

Lo J, Zheng T, Olson DG, Ruppertsberger N, Tripathi SA, Tian L, Guss AM, Lynd LR.

J Bacteriol. 2015 Sep;197(18):2920-9. doi: 10.1128/JB.00347-15. Epub 2015 Jun 29. Erratum in: J Bacteriol. 2015 Oct;197(20):3367. Tian, Liang [added].

41.

Genome-scale resources for Thermoanaerobacterium saccharolyticum.

Currie DH, Raman B, Gowen CM, Tschaplinski TJ, Land ML, Brown SD, Covalla SF, Klingeman DM, Yang ZK, Engle NL, Johnson CM, Rodriguez M, Shaw AJ, Kenealy WR, Lynd LR, Fong SS, Mielenz JR, Davison BH, Hogsett DA, Herring CD.

BMC Syst Biol. 2015 Jun 26;9:30. doi: 10.1186/s12918-015-0159-x.

42.

Cofactor Specificity of the Bifunctional Alcohol and Aldehyde Dehydrogenase (AdhE) in Wild-Type and Mutant Clostridium thermocellum and Thermoanaerobacterium saccharolyticum.

Zheng T, Olson DG, Tian L, Bomble YJ, Himmel ME, Lo J, Hon S, Shaw AJ, van Dijken JP, Lynd LR.

J Bacteriol. 2015 Aug 1;197(15):2610-9. doi: 10.1128/JB.00232-15. Epub 2015 May 26.

43.

Development of a regulatable plasmid-based gene expression system for Clostridium thermocellum.

Mearls EB, Olson DG, Herring CD, Lynd LR.

Appl Microbiol Biotechnol. 2015 Sep;99(18):7589-99. doi: 10.1007/s00253-015-6610-5. Epub 2015 May 21.

PMID:
25994254
44.

Coculture of Staphylococcus aureus with Pseudomonas aeruginosa Drives S. aureus towards Fermentative Metabolism and Reduced Viability in a Cystic Fibrosis Model.

Filkins LM, Graber JA, Olson DG, Dolben EL, Lynd LR, Bhuju S, O'Toole GA.

J Bacteriol. 2015 Jul;197(14):2252-64. doi: 10.1128/JB.00059-15. Epub 2015 Apr 27.

45.

Winter rye as a bioenergy feedstock: impact of crop maturity on composition, biological solubilization and potential revenue.

Shao X, DiMarco K, Richard TL, Lynd LR.

Biotechnol Biofuels. 2015 Feb 27;8:35. doi: 10.1186/s13068-015-0225-z. eCollection 2015.

46.

Elimination of hydrogenase active site assembly blocks H2 production and increases ethanol yield in Clostridium thermocellum.

Biswas R, Zheng T, Olson DG, Lynd LR, Guss AM.

Biotechnol Biofuels. 2015 Feb 12;8:20. doi: 10.1186/s13068-015-0204-4. eCollection 2015.

47.

Ethanol production by engineered thermophiles.

Olson DG, Sparling R, Lynd LR.

Curr Opin Biotechnol. 2015 Jun;33:130-41. doi: 10.1016/j.copbio.2015.02.006. Epub 2015 Mar 5. Review.

PMID:
25745810
48.

Bioenergy and African transformation.

Lynd LR, Sow M, Chimphango AF, Cortez LA, Brito Cruz CH, Elmissiry M, Laser M, Mayaki IA, Moraes MA, Nogueira LA, Wolfaardt GM, Woods J, van Zyl WH.

Biotechnol Biofuels. 2015 Feb 12;8:18. doi: 10.1186/s13068-014-0188-5. eCollection 2015.

49.
50.

Comparative analysis of the ability of Clostridium clariflavum strains and Clostridium thermocellum to utilize hemicellulose and unpretreated plant material.

Izquierdo JA, Pattathil S, Guseva A, Hahn MG, Lynd LR.

Biotechnol Biofuels. 2014 Nov 18;7(1):136. doi: 10.1186/s13068-014-0136-4. eCollection 2014.

Supplemental Content

Support Center