Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 20 of 24

1.

Determinants of ion selectivity in ASIC1a- and ASIC2a-containing acid-sensing ion channels.

Lynagh T, Flood E, Boiteux C, Sheikh ZP, Allen TW, Pless SA.

J Gen Physiol. 2020 Feb 3;152(2). pii: e201812297. doi: 10.1085/jgp.201812297.

PMID:
31952079
2.

Evolutionarily Conserved Interactions within the Pore Domain of Acid-Sensing Ion Channels.

Kasimova MA, Lynagh T, Sheikh ZP, Granata D, Borg CB, Carnevale V, Pless SA.

Biophys J. 2019 Sep 6. pii: S0006-3495(19)30755-6. doi: 10.1016/j.bpj.2019.09.001. [Epub ahead of print]

PMID:
31630811
3.

Acid-sensing ion channels emerged over 600 Mya and are conserved throughout the deuterostomes.

Lynagh T, Mikhaleva Y, Colding JM, Glover JC, Pless SA.

Proc Natl Acad Sci U S A. 2018 Aug 14;115(33):8430-8435. doi: 10.1073/pnas.1806614115. Epub 2018 Jul 30.

4.

Author Correction: Hippocampus-driven feed-forward inhibition of the prefrontal cortex mediates relapse of extinguished fear.

Marek R, Jin J, Goode TD, Giustino TF, Wang Q, Acca GM, Holehonnur R, Ploski JE, Fitzgerald PJ, Lynagh T, Lynch JW, Maren S, Sah P.

Nat Neurosci. 2018 Sep;21(9):1291. doi: 10.1038/s41593-018-0183-4.

PMID:
29988070
5.

A hypothalamic circuit for the circadian control of aggression.

Todd WD, Fenselau H, Wang JL, Zhang R, Machado NL, Venner A, Broadhurst RY, Kaur S, Lynagh T, Olson DP, Lowell BB, Fuller PM, Saper CB.

Nat Neurosci. 2018 May;21(5):717-724. doi: 10.1038/s41593-018-0126-0. Epub 2018 Apr 9.

6.

Investigation of Agonist Recognition and Channel Properties in a Flatworm Glutamate-Gated Chloride Channel.

Callau-Vázquez D, Pless SA, Lynagh T.

Biochemistry. 2018 Feb 27;57(8):1360-1368. doi: 10.1021/acs.biochem.7b01245. Epub 2018 Feb 7.

PMID:
29411605
7.

Hippocampus-driven feed-forward inhibition of the prefrontal cortex mediates relapse of extinguished fear.

Marek R, Jin J, Goode TD, Giustino TF, Wang Q, Acca GM, Holehonnur R, Ploski JE, Fitzgerald PJ, Lynagh T, Lynch JW, Maren S, Sah P.

Nat Neurosci. 2018 Mar;21(3):384-392. doi: 10.1038/s41593-018-0073-9. Epub 2018 Feb 5. Erratum in: Nat Neurosci. 2018 Sep;21(9):1291.

8.

Molecular Basis for Allosteric Inhibition of Acid-Sensing Ion Channel 1a by Ibuprofen.

Lynagh T, Romero-Rojo JL, Lund C, Pless SA.

J Med Chem. 2017 Oct 12;60(19):8192-8200. doi: 10.1021/acs.jmedchem.7b01072. Epub 2017 Sep 26.

PMID:
28949138
9.

A selectivity filter at the intracellular end of the acid-sensing ion channel pore.

Lynagh T, Flood E, Boiteux C, Wulf M, Komnatnyy VV, Colding JM, Allen TW, Pless SA.

Elife. 2017 May 12;6. pii: e24630. doi: 10.7554/eLife.24630.

10.

Unique Contributions of an Arginine Side Chain to Ligand Recognition in a Glutamate-gated Chloride Channel.

Lynagh T, Komnatnyy VV, Pless SA.

J Biol Chem. 2017 Mar 3;292(9):3940-3946. doi: 10.1074/jbc.M116.772939. Epub 2017 Jan 17.

11.

Role of an Absolutely Conserved Tryptophan Pair in the Extracellular Domain of Cys-Loop Receptors.

Braun N, Lynagh T, Yu R, Biggin PC, Pless SA.

ACS Chem Neurosci. 2016 Mar 16;7(3):339-48. doi: 10.1021/acschemneuro.5b00298. Epub 2016 Jan 29.

PMID:
26764897
12.

Molecular basis for convergent evolution of glutamate recognition by pentameric ligand-gated ion channels.

Lynagh T, Beech RN, Lalande MJ, Keller K, Cromer BA, Wolstenholme AJ, Laube B.

Sci Rep. 2015 Feb 24;5:8558. doi: 10.1038/srep08558.

13.

Comparative pharmacology of flatworm and roundworm glutamate-gated chloride channels: Implications for potential anthelmintics.

Lynagh T, Cromer BA, Dufour V, Laube B.

Int J Parasitol Drugs Drug Resist. 2014 Aug 10;4(3):244-55. doi: 10.1016/j.ijpddr.2014.07.004. eCollection 2014 Dec.

14.

Principles of agonist recognition in Cys-loop receptors.

Lynagh T, Pless SA.

Front Physiol. 2014 Apr 24;5:160. doi: 10.3389/fphys.2014.00160. eCollection 2014. Review.

15.

Opposing effects of the anesthetic propofol at pentameric ligand-gated ion channels mediated by a common site.

Lynagh T, Laube B.

J Neurosci. 2014 Feb 5;34(6):2155-9. doi: 10.1523/JNEUROSCI.4307-13.2014.

16.

Extracellular loop 3 of the noradrenaline transporter contributes to substrate and inhibitor selectivity.

Lynagh T, Khamu TS, Bryan-Lluka LJ.

Naunyn Schmiedebergs Arch Pharmacol. 2014 Jan;387(1):95-107. doi: 10.1007/s00210-013-0923-7. Epub 2013 Oct 1.

PMID:
24081522
17.

Propofol modulation of α1 glycine receptors does not require a structural transition at adjacent subunits that is crucial to agonist-induced activation.

Lynagh T, Kunz A, Laube B.

ACS Chem Neurosci. 2013 Nov 20;4(11):1469-78. doi: 10.1021/cn400134p. Epub 2013 Sep 17.

18.

Ivermectin binding sites in human and invertebrate Cys-loop receptors.

Lynagh T, Lynch JW.

Trends Pharmacol Sci. 2012 Aug;33(8):432-41. doi: 10.1016/j.tips.2012.05.002. Epub 2012 Jun 5. Review.

PMID:
22677714
19.

Molecular mechanisms of Cys-loop ion channel receptor modulation by ivermectin.

Lynagh T, Lynch JW.

Front Mol Neurosci. 2012 May 7;5:60. doi: 10.3389/fnmol.2012.00060. eCollection 2012.

20.

Molecular determinants of ivermectin sensitivity at the glycine receptor chloride channel.

Lynagh T, Webb TI, Dixon CL, Cromer BA, Lynch JW.

J Biol Chem. 2011 Dec 23;286(51):43913-24. doi: 10.1074/jbc.M111.262634. Epub 2011 Oct 27.

Supplemental Content

Loading ...
Support Center