Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 24

1.

The uncertain future of protected lands and waters.

Golden Kroner RE, Qin S, Cook CN, Krithivasan R, Pack SM, Bonilla OD, Cort-Kansinally KA, Coutinho B, Feng M, Martínez Garcia MI, He Y, Kennedy CJ, Lebreton C, Ledezma JC, Lovejoy TE, Luther DA, Parmanand Y, Ruíz-Agudelo CA, Yerena E, Morón Zambrano V, Mascia MB.

Science. 2019 May 31;364(6443):881-886. doi: 10.1126/science.aau5525.

PMID:
31147519
2.
3.

Acoustic adaptation to city noise through vocal learning by a songbird.

Moseley DL, Derryberry GE, Phillips JN, Danner JE, Danner RM, Luther DA, Derryberry EP.

Proc Biol Sci. 2018 Oct 10;285(1888). pii: 20181356. doi: 10.1098/rspb.2018.1356.

4.

White-crowned sparrow males show immediate flexibility in song amplitude but not in song minimum frequency in response to changes in noise levels in the field.

Derryberry EP, Gentry K, Derryberry GE, Phillips JN, Danner RM, Danner JE, Luther DA.

Ecol Evol. 2017 May 31;7(13):4991-5001. doi: 10.1002/ece3.3037. eCollection 2017 Jul.

5.

Determinants of bird conservation-action implementation and associated population trends of threatened species.

Luther DA, Brooks TM, Butchart SH, Hayward MW, Kester ME, Lamoreux J, Upgren A.

Conserv Biol. 2016 Dec;30(6):1338-1346. doi: 10.1111/cobi.12757. Epub 2016 Aug 24.

PMID:
27197021
6.

Patterns of Song across Natural and Anthropogenic Soundscapes Suggest That White-Crowned Sparrows Minimize Acoustic Masking and Maximize Signal Content.

Derryberry EP, Danner RM, Danner JE, Derryberry GE, Phillips JN, Lipshutz SE, Gentry K, Luther DA.

PLoS One. 2016 Apr 29;11(4):e0154456. doi: 10.1371/journal.pone.0154456. eCollection 2016.

7.

pGh9:ISS1 transpositional mutations in Streptococcus uberis UT888 causes reduced bacterial adherence to and internalization into bovine mammary epithelial cells.

Kerro Dego O, Prado ME, Chen X, Luther DA, Almeida RA, Oliver SP.

Vet Microbiol. 2011 Aug 5;151(3-4):379-85. doi: 10.1016/j.vetmic.2011.04.001. Epub 2011 Apr 12.

PMID:
21570220
8.

Vaccination of dairy cows with recombinant Streptococcus uberis adhesion molecule induces antibodies that reduce adherence to and internalization of S. uberis into bovine mammary epithelial cells.

Prado ME, Almeida RA, Ozen C, Luther DA, Lewis MJ, Headrick SJ, Oliver SP.

Vet Immunol Immunopathol. 2011 Jun 15;141(3-4):201-8. doi: 10.1016/j.vetimm.2011.02.023. Epub 2011 Mar 8.

PMID:
21477869
9.

Predicted antigenic regions of Streptococcus uberis adhesion molecule (SUAM) are involved in adherence to and internalization into mammary epithelial cells.

Almeida RA, Luther DA, Patel D, Oliver SP.

Vet Microbiol. 2011 Mar 24;148(2-4):323-8. doi: 10.1016/j.vetmic.2010.09.017. Epub 2010 Oct 20.

PMID:
20970262
10.

Deletion of sua gene reduces the ability of Streptococcus uberis to adhere to and internalize into bovine mammary epithelial cells.

Chen X, Dego OK, Almeida RA, Fuller TE, Luther DA, Oliver SP.

Vet Microbiol. 2011 Jan 27;147(3-4):426-34. doi: 10.1016/j.vetmic.2010.07.006. Epub 2010 Jul 15.

PMID:
20708860
11.

Production and perception of communicatory signals in a noisy environment.

Luther DA, Wiley RH.

Biol Lett. 2009 Apr 23;5(2):183-7. doi: 10.1098/rsbl.2008.0733. Epub 2009 Jan 13.

12.

Signaller: receiver coordination and the timing of communication in Amazonian birds.

Luther DA.

Biol Lett. 2008 Dec 23;4(6):651-4. doi: 10.1098/rsbl.2008.0406.

14.

Identification, isolation, and partial characterization of a novel Streptococcus uberis adhesion molecule (SUAM).

Almeida RA, Luther DA, Park HM, Oliver SP.

Vet Microbiol. 2006 Jun 15;115(1-3):183-91. Epub 2006 Mar 27.

PMID:
16564651
15.

Binding of host glycosaminoglycans and milk proteins: possible role in the pathogenesis of Streptococcus uberis mastitis.

Almeida RA, Luther DA, Nair R, Oliver SP.

Vet Microbiol. 2003 Jul 1;94(2):131-41.

PMID:
12781481
16.

Binding of bovine lactoferrin to Streptococcus dysgalactiae subsp. dysgalactiae isolated from cows with mastitis.

Park HM, Almeida RA, Luther DA, Oliver SP.

FEMS Microbiol Lett. 2002 Feb 19;208(1):35-9.

17.

Efficacy of a new premilking teat disinfectant containing a phenolic combination for the prevention of mastitis.

Oliver SP, Gillespie BE, Lewis MJ, Ivey SJ, Almeida RA, Luther DA, Johnson DL, Lamar KC, Moorehead HD, Dowlen HH.

J Dairy Sci. 2001 Jun;84(6):1545-9.

19.

Decreased growth of Streptococcus uberis in milk from mammary glands of cows challenged with the same mastitis pathogen.

Fang W, Luther DA, Almeida RA, Oliver SP.

Zentralbl Veterinarmed B. 1998 Nov;45(9):539-49.

PMID:
9852769
20.

Protein expression by Streptococcus uberis in co-culture with bovine mammary epithelial cells.

Fang W, Luther DA, Oliver SP.

FEMS Microbiol Lett. 1998 Sep 15;166(2):237-42.

22.

Identification and Differentiation of Coagulase-Negative Staphylococcus aureus by Polymerase Chain Reaction.

Matthews KR, Roberson J, Gillespie BE, Luther DA, Oliver SP.

J Food Prot. 1997 Jun;60(6):686-688. doi: 10.4315/0362-028X-60.6.686.

PMID:
31195568
23.

Adherence of Streptococcus uberis to bovine mammary epithelial cells and to extracellular matrix proteins.

Almeida RA, Luther DA, Kumar SJ, Calvinho LF, Bronze MS, Oliver SP.

Zentralbl Veterinarmed B. 1996 Sep;43(7):385-92.

PMID:
8885703
24.

Changes in bovine mammary-secretion composition during early involution following intramammary infusion of recombinant bovine cytokines.

Rejman JJ, Luther DA, Owens WE, Nickerson SC, Oliver SP.

Zentralbl Veterinarmed B. 1995 Oct;42(8):449-58.

PMID:
8578919

Supplemental Content

Loading ...
Support Center