Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 61

1.

Synergistic Impacts of Organic Acids and pH on Growth of Pseudomonas aeruginosa: A Comparison of Parametric and Bayesian Non-parametric Methods to Model Growth.

Bushell FML, Tonner PD, Jabbari S, Schmid AK, Lund PA.

Front Microbiol. 2019 Jan 8;9:3196. doi: 10.3389/fmicb.2018.03196. eCollection 2018.

2.

Minichaperone (GroEL191-345) mediated folding of MalZ proceeds by binding and release of native and functional intermediates.

Jain N, Knowles TJ, Lund PA, Chaudhuri TK.

Biochim Biophys Acta Proteins Proteom. 2018 Sep;1866(9):941-951. doi: 10.1016/j.bbapap.2018.05.015. Epub 2018 Jun 2.

PMID:
29864530
3.

The Essential Genome of Escherichia coli K-12.

Goodall ECA, Robinson A, Johnston IG, Jabbari S, Turner KA, Cunningham AF, Lund PA, Cole JA, Henderson IR.

MBio. 2018 Feb 20;9(1). pii: e02096-17. doi: 10.1128/mBio.02096-17.

4.

Solar UV exposure among outdoor workers in Denmark measured with personal UV-B dosimeters: technical and practical feasibility.

Grandahl K, Mortensen OS, Sherman DZ, Køster B, Lund PA, Ibler KS, Eriksen P.

Biomed Eng Online. 2017 Oct 10;16(1):119. doi: 10.1186/s12938-017-0410-3.

5.

Reconstructing promoter activity from Lux bioluminescent reporters.

Iqbal M, Doherty N, Page AML, Qazi SNA, Ajmera I, Lund PA, Kypraios T, Scott DJ, Hill PJ, Stekel DJ.

PLoS Comput Biol. 2017 Sep 18;13(9):e1005731. doi: 10.1371/journal.pcbi.1005731. eCollection 2017 Sep.

6.

In Vitro Antibacterial Activity of Unconjugated and Conjugated Bile Salts on Staphylococcus aureus.

Sannasiddappa TH, Lund PA, Clarke SR.

Front Microbiol. 2017 Aug 23;8:1581. doi: 10.3389/fmicb.2017.01581. eCollection 2017.

7.

Structural and Functional Analysis of the Escherichia coli Acid-Sensing Histidine Kinase EvgS.

Sen H, Aggarwal N, Ishionwu C, Hussain N, Parmar C, Jamshad M, Bavro VN, Lund PA.

J Bacteriol. 2017 Aug 22;199(18). pii: e00310-17. doi: 10.1128/JB.00310-17. Print 2017 Sep 15.

8.

Replacement of GroEL in Escherichia coli by the Group II Chaperonin from the Archaeon Methanococcus maripaludis.

Shah R, Large AT, Ursinus A, Lin B, Gowrinathan P, Martin J, Lund PA.

J Bacteriol. 2016 Sep 9;198(19):2692-700. doi: 10.1128/JB.00317-16. Print 2016 Oct 1.

9.

The Antibacterial Activity of Acetic Acid against Biofilm-Producing Pathogens of Relevance to Burns Patients.

Halstead FD, Rauf M, Moiemen NS, Bamford A, Wearn CM, Fraise AP, Lund PA, Oppenheim BA, Webber MA.

PLoS One. 2015 Sep 9;10(9):e0136190. doi: 10.1371/journal.pone.0136190. eCollection 2015.

10.

The Escherichia coli Acid Stress Response and Its Significance for Pathogenesis.

De Biase D, Lund PA.

Adv Appl Microbiol. 2015;92:49-88. doi: 10.1016/bs.aambs.2015.03.002. Epub 2015 May 6. Review.

PMID:
26003933
11.

Characterization of mutations in the PAS domain of the EvgS sensor kinase selected by laboratory evolution for acid resistance in Escherichia coli.

Johnson MD, Bell J, Clarke K, Chandler R, Pathak P, Xia Y, Marshall RL, Weinstock GM, Loman NJ, Winn PJ, Lund PA.

Mol Microbiol. 2014 Sep;93(5):911-27. doi: 10.1111/mmi.12704. Epub 2014 Jul 24.

12.

Identification of the monocyte activating motif in Mycobacterium tuberculosis chaperonin 60.1.

Hu Y, Coates AR, Liu A, Lund PA, Henderson B.

Tuberculosis (Edinb). 2013 Jul;93(4):442-7. doi: 10.1016/j.tube.2013.04.001. Epub 2013 May 3.

PMID:
23643849
13.

Chaperonin 60: a paradoxical, evolutionarily conserved protein family with multiple moonlighting functions.

Henderson B, Fares MA, Lund PA.

Biol Rev Camb Philos Soc. 2013 Nov;88(4):955-87. doi: 10.1111/brv.12037. Epub 2013 Mar 29. Review.

PMID:
23551966
14.

Laboratory adapted Escherichia coli K-12 becomes a pathogen of Caenorhabditis elegans upon restoration of O antigen biosynthesis.

Browning DF, Wells TJ, França FL, Morris FC, Sevastsyanovich YR, Bryant JA, Johnson MD, Lund PA, Cunningham AF, Hobman JL, May RC, Webber MA, Henderson IR.

Mol Microbiol. 2013 Mar;87(5):939-50. doi: 10.1111/mmi.12144. Epub 2013 Jan 28.

15.

Identification of elements that dictate the specificity of mitochondrial Hsp60 for its co-chaperonin.

Parnas A, Nisemblat S, Weiss C, Levy-Rimler G, Pri-Or A, Zor T, Lund PA, Bross P, Azem A.

PLoS One. 2012;7(12):e50318. doi: 10.1371/journal.pone.0050318. Epub 2012 Dec 4.

16.

The unusual mycobacterial chaperonins: evidence for in vivo oligomerization and specialization of function.

Fan M, Rao T, Zacco E, Ahmed MT, Shukla A, Ojha A, Freeke J, Robinson CV, Benesch JL, Lund PA.

Mol Microbiol. 2012 Sep;85(5):934-44. doi: 10.1111/j.1365-2958.2012.08150.x. Epub 2012 Jul 26.

17.

Structural basis of inhibition of Mycobacterium tuberculosis DprE1 by benzothiazinone inhibitors.

Batt SM, Jabeen T, Bhowruth V, Quill L, Lund PA, Eggeling L, Alderwick LJ, Fütterer K, Besra GS.

Proc Natl Acad Sci U S A. 2012 Jul 10;109(28):11354-9. doi: 10.1073/pnas.1205735109. Epub 2012 Jun 25.

18.

RcsB is required for inducible acid resistance in Escherichia coli and acts at gadE-dependent and -independent promoters.

Johnson MD, Burton NA, Gutiérrez B, Painter K, Lund PA.

J Bacteriol. 2011 Jul;193(14):3653-6. doi: 10.1128/JB.05040-11. Epub 2011 May 13.

19.

Differential expression of the multiple chaperonins of Mycobacterium smegmatis.

Rao T, Lund PA.

FEMS Microbiol Lett. 2010 Sep 1;310(1):24-31. doi: 10.1111/j.1574-6968.2010.02039.x. Epub 2010 Jun 16.

20.

Novel aspects of the acid response network of E. coli K-12 are revealed by a study of transcriptional dynamics.

Burton NA, Johnson MD, Antczak P, Robinson A, Lund PA.

J Mol Biol. 2010 Sep 3;401(5):726-42. doi: 10.1016/j.jmb.2010.06.054. Epub 2010 Jul 13.

PMID:
20603130
21.

Multiple moonlighting functions of mycobacterial molecular chaperones.

Henderson B, Lund PA, Coates AR.

Tuberculosis (Edinb). 2010 Mar;90(2):119-24. doi: 10.1016/j.tube.2010.01.004. Epub 2010 Mar 24. Review.

PMID:
20338810
22.

Characterisation of a GroEL single-ring mutant that supports growth of Escherichia coli and has GroES-dependent ATPase activity.

Kovács E, Sun Z, Liu H, Scott DJ, Karsisiotis AI, Clarke AR, Burston SG, Lund PA.

J Mol Biol. 2010 Mar 12;396(5):1271-83. doi: 10.1016/j.jmb.2009.11.074. Epub 2009 Dec 16.

PMID:
20006619
23.

The hrcA and hspR regulons of Campylobacter jejuni.

Holmes CW, Penn CW, Lund PA.

Microbiology. 2010 Jan;156(Pt 1):158-66. doi: 10.1099/mic.0.031708-0. Epub 2009 Oct 22.

PMID:
19850618
24.

Characterisation of mutations in GroES that allow GroEL to function as a single ring.

Liu H, Kovács E, Lund PA.

FEBS Lett. 2009 Jul 21;583(14):2365-71. doi: 10.1016/j.febslet.2009.06.027. Epub 2009 Jun 21.

25.

Multiple chaperonins in bacteria--why so many?

Lund PA.

FEMS Microbiol Rev. 2009 Jul;33(4):785-800. doi: 10.1111/j.1574-6976.2009.00178.x. Epub 2009 Apr 7. Review.

26.

Archaeal chaperonins.

Large AT, Lund PA.

Front Biosci (Landmark Ed). 2009 Jan 1;14:1304-24. Review.

PMID:
19273132
27.

Chaperones and protein folding in the archaea.

Large AT, Goldberg MD, Lund PA.

Biochem Soc Trans. 2009 Feb;37(Pt 1):46-51. doi: 10.1042/BST0370046. Review.

PMID:
19143600
28.

Archaea at St Andrews.

Large AT, Lund PA.

Genome Biol. 2008;9(9):321. doi: 10.1186/gb-2008-9-9-321. Epub 2008 Sep 30.

29.

The chaperone function: meanings and myths.

Lund PA, Ellis RJ.

Novartis Found Symp. 2008;291:23-36; discussion 36-44, 137-40.

PMID:
18575264
30.

A Mycobacterium tuberculosis mutant lacking the groEL homologue cpn60.1 is viable but fails to induce an inflammatory response in animal models of infection.

Hu Y, Henderson B, Lund PA, Tormay P, Ahmed MT, Gurcha SS, Besra GS, Coates AR.

Infect Immun. 2008 Apr;76(4):1535-46. doi: 10.1128/IAI.01078-07. Epub 2008 Jan 28.

31.

Characterization of a tightly controlled promoter of the halophilic archaeon Haloferax volcanii and its use in the analysis of the essential cct1 gene.

Large A, Stamme C, Lange C, Duan Z, Allers T, Soppa J, Lund PA.

Mol Microbiol. 2007 Dec;66(5):1092-106. Epub 2007 Oct 31.

32.

Homologous cpn60 genes in Rhizobium leguminosarum are not functionally equivalent.

Gould PS, Burgar HR, Lund PA.

Cell Stress Chaperones. 2007 Summer;12(2):123-31.

33.

All three chaperonin genes in the archaeon Haloferax volcanii are individually dispensable.

Kapatai G, Large A, Benesch JL, Robinson CV, Carrascosa JL, Valpuesta JM, Gowrinathan P, Lund PA.

Mol Microbiol. 2006 Sep;61(6):1583-97.

34.

Distinct mechanisms regulate expression of the two major groEL homologues in Rhizobium leguminosarum.

Gould P, Maguire M, Lund PA.

Arch Microbiol. 2007 Jan;187(1):1-14. Epub 2006 Aug 30.

PMID:
16944097
35.

Preventing illicit liaisons in Poland.

Lund PA, Tuite MF.

EMBO Rep. 2005 Dec;6(12):1126-30. No abstract available.

36.

Two of the three groEL homologues in Rhizobium leguminosarum are dispensable for normal growth.

Rodríguez-Quiñones F, Maguire M, Wallington EJ, Gould PS, Yerko V, Downie JA, Lund PA.

Arch Microbiol. 2005 May;183(4):253-65. Epub 2005 Apr 14.

PMID:
15830189
37.

Three GroEL homologues from Rhizobium leguminosarum have distinct in vitro properties.

George R, Kelly SM, Price NC, Erbse A, Fisher M, Lund PA.

Biochem Biophys Res Commun. 2004 Nov 12;324(2):822-8.

PMID:
15474501
38.

Isolation and characterisation of mutants of GroEL that are fully functional as single rings.

Sun Z, Scott DJ, Lund PA.

J Mol Biol. 2003 Sep 19;332(3):715-28.

PMID:
12963378
39.

The chaperonins: perspectives from the Archaea.

Lund PA, Large AT, Kapatai G.

Biochem Soc Trans. 2003 Jun;31(Pt 3):681-5. Review.

PMID:
12773182
40.

Properties of the chaperonin complex from the halophilic archaeon Haloferax volcanii.

Large AT, Kovacs E, Lund PA.

FEBS Lett. 2002 Dec 18;532(3):309-12.

41.

Rhizobium leguminosarum chaperonin 60.3, but not chaperonin 60.1, induces cytokine production by human monocytes: activity is dependent on interaction with cell surface CD14.

Lewthwaite J, George R, Lund PA, Poole S, Tormay P, Sharp L, Coates AR, Henderson B.

Cell Stress Chaperones. 2002 Apr;7(2):130-6.

42.

Determination of chaperonin activity in vivo.

van der Vies SM, Lund PA.

Methods Mol Biol. 2000;140:75-96. No abstract available.

PMID:
11484496
43.

Microbial molecular chaperones.

Lund PA.

Adv Microb Physiol. 2001;44:93-140. Review.

PMID:
11407116
44.

Trp203 mutation in GroEL promotes a self-association reaction: a hydrodynamic study.

Walters C, Clarke A, Cliff MJ, Lund PA, Harding SE.

Eur Biophys J. 2000;29(6):420-8.

PMID:
11081403
45.
46.

A kinetic analysis of the nucleotide-induced allosteric transitions of GroEL.

Cliff MJ, Kad NM, Hay N, Lund PA, Webb MR, Burston SG, Clarke AR.

J Mol Biol. 1999 Oct 29;293(3):667-84.

PMID:
10543958
47.

Chaperone activity of a chimeric GroEL protein that can exist in a single or double ring form.

Erbse A, Yifrach O, Jones S, Lund PA.

J Biol Chem. 1999 Jul 16;274(29):20351-7.

48.

GroEL protects the sarcoplasmic reticulum Ca(++)-dependent ATPase from inactivation in vitro.

Javed MU, Michelangeli F, Lund PA.

Biochem Mol Biol Int. 1999 Apr;47(4):631-8.

PMID:
10319415
49.

Mutations in dsbA and dsbB, but not dsbC, lead to an enhanced sensitivity of Escherichia coli to Hg2+ and Cd2+.

Stafford SJ, Humphreys DP, Lund PA.

FEMS Microbiol Lett. 1999 May 1;174(1):179-84.

50.

Supplemental Content

Support Center