Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 56

1.

Functional Deficits Precede Structural Lesions in Mice With High-Fat Diet-Induced Diabetic Retinopathy.

Rajagopal R, Bligard GW, Zhang S, Yin L, Lukasiewicz P, Semenkovich CF.

Diabetes. 2016 Apr;65(4):1072-84. doi: 10.2337/db15-1255. Epub 2016 Jan 6.

2.

Differential encoding of spatial information among retinal on cone bipolar cells.

Purgert RJ, Lukasiewicz PD.

J Neurophysiol. 2015 Sep;114(3):1757-72. doi: 10.1152/jn.00287.2015. Epub 2015 Jul 22.

3.

Developmental regulation and activity-dependent maintenance of GABAergic presynaptic inhibition onto rod bipolar cell axonal terminals.

Schubert T, Hoon M, Euler T, Lukasiewicz PD, Wong RO.

Neuron. 2013 Apr 10;78(1):124-37. doi: 10.1016/j.neuron.2013.01.037.

4.

The mode of retinal presynaptic inhibition switches with light intensity.

Ichinose T, Lukasiewicz PD.

J Neurosci. 2012 Mar 28;32(13):4360-71. doi: 10.1523/JNEUROSCI.5645-11.2012.

5.

Amacrine cells: seeing the forest and the trees.

Diamond JS, Lukasiewicz PD.

Vis Neurosci. 2012 Jan;29(1):1-2. No abstract available.

PMID:
22416288
6.

Nonlinear interactions between excitatory and inhibitory retinal synapses control visual output.

Sagdullaev BT, Eggers ED, Purgert R, Lukasiewicz PD.

J Neurosci. 2011 Oct 19;31(42):15102-12. doi: 10.1523/JNEUROSCI.1801-11.2011.

7.

G-protein betagamma-complex is crucial for efficient signal amplification in vision.

Kolesnikov AV, Rikimaru L, Hennig AK, Lukasiewicz PD, Fliesler SJ, Govardovskii VI, Kefalov VJ, Kisselev OG.

J Neurosci. 2011 Jun 1;31(22):8067-77. doi: 10.1523/JNEUROSCI.0174-11.2011.

8.

Multiple pathways of inhibition shape bipolar cell responses in the retina.

Eggers ED, Lukasiewicz PD.

Vis Neurosci. 2011 Jan;28(1):95-108. doi: 10.1017/S0952523810000209. Epub 2010 Oct 8. Review.

9.

Interneuron circuits tune inhibition in retinal bipolar cells.

Eggers ED, Lukasiewicz PD.

J Neurophysiol. 2010 Jan;103(1):25-37. doi: 10.1152/jn.00458.2009. Epub 2009 Nov 11.

10.

Development of presynaptic inhibition onto retinal bipolar cell axon terminals is subclass-specific.

Schubert T, Kerschensteiner D, Eggers ED, Misgeld T, Kerschensteiner M, Lichtman JW, Lukasiewicz PD, Wong RO.

J Neurophysiol. 2008 Jul;100(1):304-16. doi: 10.1152/jn.90202.2008. Epub 2008 Apr 24.

11.

Nyctalopin expression in retinal bipolar cells restores visual function in a mouse model of complete X-linked congenital stationary night blindness.

Gregg RG, Kamermans M, Klooster J, Lukasiewicz PD, Peachey NS, Vessey KA, McCall MA.

J Neurophysiol. 2007 Nov;98(5):3023-33. Epub 2007 Sep 19.

12.

Carbonic anhydrase XIV deficiency produces a functional defect in the retinal light response.

Ogilvie JM, Ohlemiller KK, Shah GN, Ulmasov B, Becker TA, Waheed A, Hennig AK, Lukasiewicz PD, Sly WS.

Proc Natl Acad Sci U S A. 2007 May 15;104(20):8514-9. Epub 2007 May 7.

13.

Presynaptic inhibition differentially shapes transmission in distinct circuits in the mouse retina.

Eggers ED, McCall MA, Lukasiewicz PD.

J Physiol. 2007 Jul 15;582(Pt 2):569-82. Epub 2007 Apr 26.

14.

Ambient light regulates sodium channel activity to dynamically control retinal signaling.

Ichinose T, Lukasiewicz PD.

J Neurosci. 2007 Apr 25;27(17):4756-64.

15.

Receptor and transmitter release properties set the time course of retinal inhibition.

Eggers ED, Lukasiewicz PD.

J Neurosci. 2006 Sep 13;26(37):9413-25.

16.

Presynaptic inhibition modulates spillover, creating distinct dynamic response ranges of sensory output.

Sagdullaev BT, McCall MA, Lukasiewicz PD.

Neuron. 2006 Jun 15;50(6):923-35.

17.
18.

Inner and outer retinal pathways both contribute to surround inhibition of salamander ganglion cells.

Ichinose T, Lukasiewicz PD.

J Physiol. 2005 Jun 1;565(Pt 2):517-35. Epub 2005 Mar 10.

19.

Sodium channels in transient retinal bipolar cells enhance visual responses in ganglion cells.

Ichinose T, Shields CR, Lukasiewicz PD.

J Neurosci. 2005 Feb 16;25(7):1856-65.

20.

Synaptic mechanisms that shape visual signaling at the inner retina.

Lukasiewicz PD.

Prog Brain Res. 2005;147:205-18. Review.

PMID:
15581708
21.

GABAC receptor-mediated inhibition in the retina.

Lukasiewicz PD, Eggers ED, Sagdullaev BT, McCall MA.

Vision Res. 2004 Dec;44(28):3289-96. Review.

22.

Spike-dependent GABA inputs to bipolar cell axon terminals contribute to lateral inhibition of retinal ganglion cells.

Shields CR, Lukasiewicz PD.

J Neurophysiol. 2003 May;89(5):2449-58. Epub 2002 Nov 13.

23.
24.
25.

Elimination of the rho1 subunit abolishes GABA(C) receptor expression and alters visual processing in the mouse retina.

McCall MA, Lukasiewicz PD, Gregg RG, Peachey NS.

J Neurosci. 2002 May 15;22(10):4163-74.

26.
27.

Morphological and electrophysiological evidence for an ionotropic GABA receptor of novel pharmacology.

Shen DW, Higgs MH, Salvay D, Olney JW, Lukasiewicz PD, Romano C.

J Neurophysiol. 2002 Jan;87(1):250-6.

29.

Distinct ionotropic GABA receptors mediate presynaptic and postsynaptic inhibition in retinal bipolar cells.

Shields CR, Tran MN, Wong RO, Lukasiewicz PD.

J Neurosci. 2000 Apr 1;20(7):2673-82.

30.

GABA(C) receptors control adaptive changes in a glycinergic inhibitory pathway in salamander retina.

Cook PB, Lukasiewicz PD, McReynolds JS.

J Neurosci. 2000 Jan 15;20(2):806-12.

31.

AMPA receptor kinetics limit retinal amacrine cell excitatory synaptic responses.

Tran MN, Higgs MH, Lukasiewicz PD.

Vis Neurosci. 1999 Sep-Oct;16(5):835-42.

PMID:
10580719
32.

Glutamate uptake limits synaptic excitation of retinal ganglion cells.

Higgs MH, Lukasiewicz PD.

J Neurosci. 1999 May 15;19(10):3691-700.

33.

A diversity of GABA receptors in the retina.

Lukasiewicz PD, Shields CR.

Semin Cell Dev Biol. 1998 Jun;9(3):293-9. Review.

PMID:
9665865
34.
35.

Age-dependent and cell class-specific modulation of retinal ganglion cell bursting activity by GABA.

Fischer KF, Lukasiewicz PD, Wong RO.

J Neurosci. 1998 May 15;18(10):3767-78.

36.
37.

Fenamates protect neurons against ischemic and excitotoxic injury in chick embryo retina.

Chen Q, Olney JW, Lukasiewicz PD, Almli T, Romano C.

Neurosci Lett. 1998 Feb 20;242(3):163-6.

PMID:
9530931
38.

Ca2+-independent excitotoxic neurodegeneration in isolated retina, an intact neural net: a role for Cl- and inhibitory transmitters.

Chen Q, Olney JW, Lukasiewicz PD, Almli T, Romano C.

Mol Pharmacol. 1998 Mar;53(3):564-72.

PMID:
9495825
39.

GABAC receptors on ferret retinal bipolar cells: a diversity of subtypes in mammals?

Lukasiewicz PD, Wong RO.

Vis Neurosci. 1997 Sep-Oct;14(5):989-94.

PMID:
9364734
40.

AMPA-preferring receptors mediate excitatory synaptic inputs to retinal ganglion cells.

Lukasiewicz PD, Wilson JA, Lawrence JE.

J Neurophysiol. 1997 Jan;77(1):57-64.

41.

GABAC receptors in the vertebrate retina.

Lukasiewicz PD.

Mol Neurobiol. 1996 Jun;12(3):181-94. Review.

PMID:
8884747
42.

Immunocytochemical localization of polyamines in the tiger salamander retina.

Valentino TL, Lukasiewicz PD, Romano C.

Brain Res. 1996 Mar 25;713(1-2):278-85.

PMID:
8725001
43.
44.
45.

A novel GABA receptor on bipolar cell terminals in the tiger salamander retina.

Lukasiewicz PD, Maple BR, Werblin FS.

J Neurosci. 1994 Mar;14(3 Pt 1):1202-12.

47.

Amacrine cells in the tiger salamander retina: morphology, physiology, and neurotransmitter identification.

Yang CY, Lukasiewicz P, Maguire G, Werblin FS, Yazulla S.

J Comp Neurol. 1991 Oct 1;312(1):19-32.

PMID:
1683878
48.

Synaptic and voltage-gated currents in interplexiform cells of the tiger salamander retina.

Maguire G, Lukasiewicz P, Werblin F.

J Gen Physiol. 1990 Apr;95(4):755-70.

50.

Supplemental Content

Loading ...
Support Center