Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 34

1.

Crystal structure of UDP-glucose pyrophosphorylase from Yersinia pestis, a potential therapeutic target against plague.

Gibbs ME, Lountos GT, Gumpena R, Waugh DS.

Acta Crystallogr F Struct Biol Commun. 2019 Sep 1;75(Pt 9):608-615. doi: 10.1107/S2053230X19011154. Epub 2019 Aug 28.

PMID:
31475928
2.

Identification of a ligand binding hot spot and structural motifs replicating aspects of tyrosyl-DNA phosphodiesterase I (TDP1) phosphoryl recognition by crystallographic fragment cocktail screening.

Lountos GT, Zhao XZ, Kiselev E, Tropea JE, Needle D, Pommier Y, Burke TR, Waugh DS.

Nucleic Acids Res. 2019 Jun 14. pii: gkz515. doi: 10.1093/nar/gkz515. [Epub ahead of print]

PMID:
31199869
3.

Targeting Protein-Protein Interactions of Tyrosine Phosphatases with Microarrayed Fragment Libraries Displayed on Phosphopeptide Substrate Scaffolds.

Hogan M, Bahta M, Tsuji K, Nguyen TX, Cherry S, Lountos GT, Tropea JE, Zhao BM, Zhao XZ, Waugh DS, Burke TR Jr, Ulrich RG.

ACS Comb Sci. 2019 Mar 11;21(3):158-170. doi: 10.1021/acscombsci.8b00122. Epub 2019 Jan 31.

PMID:
30629404
4.

High-resolution crystal structures of the D1 and D2 domains of protein tyrosine phosphatase epsilon for structure-based drug design.

Lountos GT, Raran-Kurussi S, Zhao BM, Dyas BK, Burke TR Jr, Ulrich RG, Waugh DS.

Acta Crystallogr D Struct Biol. 2018 Oct 1;74(Pt 10):1015-1026. doi: 10.1107/S2059798318011919. Epub 2018 Oct 2.

5.

MBP-binding DARPins facilitate the crystallization of an MBP fusion protein.

Gumpena R, Lountos GT, Waugh DS.

Acta Crystallogr F Struct Biol Commun. 2018 Sep 1;74(Pt 9):549-557. doi: 10.1107/S2053230X18009901. Epub 2018 Aug 29.

6.

Crystal structure of the human dual specificity phosphatase 1 catalytic domain.

Gumpena R, Lountos GT, Raran-Kurussi S, Tropea JE, Cherry S, Waugh DS.

Protein Sci. 2018 Feb;27(2):561-567. doi: 10.1002/pro.3328. Epub 2017 Nov 21.

7.

A Small-Molecule Microarray Approach for the Identification of E2 Enzyme Inhibitors in Ubiquitin-Like Conjugation Pathways.

Zlotkowski K, Hewitt WM, Sinniah RS, Tropea JE, Needle D, Lountos GT, Barchi JJ Jr, Waugh DS, Schneekloth JS Jr.

SLAS Discov. 2017 Jul;22(6):760-766. doi: 10.1177/2472555216683937. Epub 2017 Jan 6.

8.

Insights Into the Allosteric Inhibition of the SUMO E2 Enzyme Ubc9.

Hewitt WM, Lountos GT, Zlotkowski K, Dahlhauser SD, Saunders LB, Needle D, Tropea JE, Zhan C, Wei G, Ma B, Nussinov R, Waugh DS, Schneekloth JS Jr.

Angew Chem Int Ed Engl. 2016 May 4;55(19):5703-7. doi: 10.1002/anie.201511351. Epub 2016 Apr 1.

9.

Phosphotyrosine Substrate Sequence Motifs for Dual Specificity Phosphatases.

Zhao BM, Keasey SL, Tropea JE, Lountos GT, Dyas BK, Cherry S, Raran-Kurussi S, Waugh DS, Ulrich RG.

PLoS One. 2015 Aug 24;10(8):e0134984. doi: 10.1371/journal.pone.0134984. eCollection 2015.

10.

Structure of human dual-specificity phosphatase 7, a potential cancer drug target.

Lountos GT, Austin BP, Tropea JE, Waugh DS.

Acta Crystallogr F Struct Biol Commun. 2015 Jun;71(Pt 6):650-6. doi: 10.1107/S2053230X1500504X. Epub 2015 May 20.

11.

Structures of the Middle East respiratory syndrome coronavirus 3C-like protease reveal insights into substrate specificity.

Needle D, Lountos GT, Waugh DS.

Acta Crystallogr D Biol Crystallogr. 2015 May;71(Pt 5):1102-11. doi: 10.1107/S1399004715003521. Epub 2015 Apr 24.

12.

Structural analysis of human dual-specificity phosphatase 22 complexed with a phosphotyrosine-like substrate.

Lountos GT, Cherry S, Tropea JE, Waugh DS.

Acta Crystallogr F Struct Biol Commun. 2015 Feb;71(Pt 2):199-205. doi: 10.1107/S2053230X15000217. Epub 2015 Jan 28.

13.

Biomolecular Interactions of small-molecule inhibitors affecting the YopH protein tyrosine phosphatase.

Hogan M, Bahta M, Cherry S, Lountos GT, Tropea JE, Zhao BM, Burke TR Jr, Waugh DS, Ulrich RG.

Chem Biol Drug Des. 2013 Mar;81(3):323-33. doi: 10.1111/cbdd.12097.

14.

Structure of the Trypanosoma cruzi protein tyrosine phosphatase TcPTP1, a potential therapeutic target for Chagas' disease.

Lountos GT, Tropea JE, Waugh DS.

Mol Biochem Parasitol. 2013 Jan;187(1):1-8. doi: 10.1016/j.molbiopara.2012.10.006. Epub 2012 Nov 5.

15.

Structure of the cytoplasmic domain of Yersinia pestis YscD, an essential component of the type III secretion system.

Lountos GT, Tropea JE, Waugh DS.

Acta Crystallogr D Biol Crystallogr. 2012 Mar;68(Pt 3):201-9. doi: 10.1107/S0907444911054308. Epub 2012 Feb 7.

16.

Structural characterization of inhibitor complexes with checkpoint kinase 2 (Chk2), a drug target for cancer therapy.

Lountos GT, Jobson AG, Tropea JE, Self CR, Zhang G, Pommier Y, Shoemaker RH, Waugh DS.

J Struct Biol. 2011 Dec;176(3):292-301. doi: 10.1016/j.jsb.2011.09.008. Epub 2011 Sep 22.

17.

X-ray structures of checkpoint kinase 2 in complex with inhibitors that target its gatekeeper-dependent hydrophobic pocket.

Lountos GT, Jobson AG, Tropea JE, Self CR, Zhang G, Pommier Y, Shoemaker RH, Waugh DS.

FEBS Lett. 2011 Oct 20;585(20):3245-9. doi: 10.1016/j.febslet.2011.08.050. Epub 2011 Sep 7.

18.

Isothiazolidinone (IZD) as a phosphoryl mimetic in inhibitors of the Yersinia pestis protein tyrosine phosphatase YopH.

Kim SE, Bahta M, Lountos GT, Ulrich RG, Burke TR Jr, Waugh DS.

Acta Crystallogr D Biol Crystallogr. 2011 Jul;67(Pt 7):639-45. doi: 10.1107/S0907444911018610. Epub 2011 Jun 11.

19.

Structure of human dual-specificity phosphatase 27 at 2.38 Å resolution.

Lountos GT, Tropea JE, Waugh DS.

Acta Crystallogr D Biol Crystallogr. 2011 May;67(Pt 5):471-9. doi: 10.1107/S090744491100970X. Epub 2011 Apr 16.

20.

Utilization of nitrophenylphosphates and oxime-based ligation for the development of nanomolar affinity inhibitors of the Yersinia pestis outer protein H (YopH) phosphatase.

Bahta M, Lountos GT, Dyas B, Kim SE, Ulrich RG, Waugh DS, Burke TR Jr.

J Med Chem. 2011 Apr 28;54(8):2933-43. doi: 10.1021/jm200022g. Epub 2011 Mar 28.

21.

Engineering of glycerol dehydrogenase for improved activity towards 1, 3-butanediol.

Zhang H, Lountos GT, Ching CB, Jiang R.

Appl Microbiol Biotechnol. 2010 Sep;88(1):117-24. doi: 10.1007/s00253-010-2735-8. Epub 2010 Jun 29.

PMID:
20585771
22.

Development of antiproliferative phenylmaleimides that activate the unfolded protein response.

Muus U, Hose C, Yao W, Kosakowska-Cholody T, Farnsworth D, Dyba M, Lountos GT, Waugh DS, Monks A, Burke TR Jr, Michejda CJ.

Bioorg Med Chem. 2010 Jun 15;18(12):4535-41. doi: 10.1016/j.bmc.2010.04.057. Epub 2010 Apr 24.

23.

A rapid oxime linker-based library approach to identification of bivalent inhibitors of the Yersinia pestis protein-tyrosine phosphatase, YopH.

Liu F, Hakami RM, Dyas B, Bahta M, Lountos GT, Waugh DS, Ulrich RG, Burke TR Jr.

Bioorg Med Chem Lett. 2010 May 1;20(9):2813-6. doi: 10.1016/j.bmcl.2010.03.058. Epub 2010 Mar 15.

24.

Overproduction, purification and structure determination of human dual-specificity phosphatase 14.

Lountos GT, Tropea JE, Cherry S, Waugh DS.

Acta Crystallogr D Biol Crystallogr. 2009 Oct;65(Pt 10):1013-20. doi: 10.1107/S0907444909023762. Epub 2009 Sep 16.

25.

Cellular inhibition of checkpoint kinase 2 (Chk2) and potentiation of camptothecins and radiation by the novel Chk2 inhibitor PV1019 [7-nitro-1H-indole-2-carboxylic acid {4-[1-(guanidinohydrazone)-ethyl]-phenyl}-amide].

Jobson AG, Lountos GT, Lorenzi PL, Llamas J, Connelly J, Cerna D, Tropea JE, Onda A, Zoppoli G, Kondapaka S, Zhang G, Caplen NJ, Cardellina JH 2nd, Yoo SS, Monks A, Self C, Waugh DS, Shoemaker RH, Pommier Y.

J Pharmacol Exp Ther. 2009 Dec;331(3):816-26. doi: 10.1124/jpet.109.154997. Epub 2009 Sep 9.

26.

Crystal structure of checkpoint kinase 2 in complex with NSC 109555, a potent and selective inhibitor.

Lountos GT, Tropea JE, Zhang D, Jobson AG, Pommier Y, Shoemaker RH, Waugh DS.

Protein Sci. 2009 Jan;18(1):92-100. doi: 10.1002/pro.16.

27.

Atomic resolution structure of the cytoplasmic domain of Yersinia pestis YscU, a regulatory switch involved in type III secretion.

Lountos GT, Austin BP, Nallamsetty S, Waugh DS.

Protein Sci. 2009 Feb;18(2):467-74. doi: 10.1002/pro.56.

28.

Crystallographic, spectroscopic, and computational analysis of a flavin C4a-oxygen adduct in choline oxidase.

Orville AM, Lountos GT, Finnegan S, Gadda G, Prabhakar R.

Biochemistry. 2009 Feb 3;48(4):720-8. doi: 10.1021/bi801918u.

29.

Role of Glu312 in binding and positioning of the substrate for the hydride transfer reaction in choline oxidase.

Quaye O, Lountos GT, Fan F, Orville AM, Gadda G.

Biochemistry. 2008 Jan 8;47(1):243-56. Epub 2007 Dec 12.

PMID:
18072756
30.

The crystal structure of NAD(P)H oxidase from Lactobacillus sanfranciscensis: insights into the conversion of O2 into two water molecules by the flavoenzyme.

Lountos GT, Jiang R, Wellborn WB, Thaler TL, Bommarius AS, Orville AM.

Biochemistry. 2006 Aug 15;45(32):9648-59.

PMID:
16893166
31.

Structure of B-DNA with cations tethered in the major groove.

Moulaei T, Maehigashi T, Lountos GT, Komeda S, Watkins D, Stone MP, Marky LA, Li JS, Gold B, Williams LD.

Biochemistry. 2005 May 24;44(20):7458-68.

PMID:
15895989
32.

Crystal structures and functional studies of T4moD, the toluene 4-monooxygenase catalytic effector protein.

Lountos GT, Mitchell KH, Studts JM, Fox BG, Orville AM.

Biochemistry. 2005 May 17;44(19):7131-42.

PMID:
15882052
33.

Crystallization and preliminary analysis of a water-forming NADH oxidase from Lactobacillus sanfranciscensis.

Lountos GT, Riebel BR, Wellborn WB, Bommarius AS, Orville AM.

Acta Crystallogr D Biol Crystallogr. 2004 Nov;60(Pt 11):2044-7. Epub 2004 Oct 20.

PMID:
15502322
34.

Crystallization and preliminary analysis of native and N-terminal truncated isoforms of toluene-4-monooxygenase catalytic effector protein.

Orville AM, Studts JM, Lountos GT, Mitchell KH, Fox BG.

Acta Crystallogr D Biol Crystallogr. 2003 Mar;59(Pt 3):572-5. Epub 2003 Feb 21.

PMID:
12595730

Supplemental Content

Loading ...
Support Center