Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 140


Photosynthesis across African cassava germplasm is limited by Rubisco and mesophyll conductance at steady-state, but by stomatal conductance in fluctuating light.

De Souza AP, Wang Y, Orr DJ, Carmo-Silva E, Long SP.

New Phytol. 2019 Aug 25. doi: 10.1111/nph.16142. [Epub ahead of print]


Field-grown tobacco plants maintain robust growth while accumulating large quantities of a bacterial cellulase in chloroplasts.

Schmidt JA, McGrath JM, Hanson MR, Long SP, Ahner BA.

Nat Plants. 2019 Jul;5(7):715-721. doi: 10.1038/s41477-019-0467-z. Epub 2019 Jul 8.


Predicting light-induced stomatal movements based on the redox state of plastoquinone: theory and validation.

Kromdijk J, Głowacka K, Long SP.

Photosynth Res. 2019 Jul;141(1):83-97. doi: 10.1007/s11120-019-00632-x. Epub 2019 Mar 19.


Bundle sheath chloroplast volume can house sufficient Rubisco to avoid limiting C4 photosynthesis during chilling.

Pignon CP, Lundgren MR, Osborne CP, Long SP.

J Exp Bot. 2019 Jan 1;70(1):357-365. doi: 10.1093/jxb/ery345.


BSD2 is a Rubisco-specific assembly chaperone, forms intermediary hetero-oligomeric complexes, and is nonlimiting to growth in tobacco.

Conlan B, Birch R, Kelso C, Holland S, De Souza AP, Long SP, Beck JL, Whitney SM.

Plant Cell Environ. 2019 Apr;42(4):1287-1301. doi: 10.1111/pce.13473. Epub 2018 Nov 20.


Population structure of Miscanthus sacchariflorus reveals two major polyploidization events, tetraploid-mediated unidirectional introgression from diploid M. sinensis, and diversity centred around the Yellow Sea.

Clark LV, Jin X, Petersen KK, Anzoua KG, Bagmet L, Chebukin P, Deuter M, Dzyubenko E, Dzyubenko N, Heo K, Johnson DA, Jørgensen U, Kjeldsen JB, Nagano H, Peng J, Sabitov A, Yamada T, Yoo JH, Yu CY, Long SP, Sacks EJ.

Ann Bot. 2018 Sep 20. doi: 10.1093/aob/mcy161. [Epub ahead of print]


Phenotyping photosynthesis on the limit - a critical examination of RACiR.

Taylor SH, Long SP.

New Phytol. 2019 Jan;221(2):621-624. doi: 10.1111/nph.15382. Epub 2018 Sep 10. No abstract available.


Toward improving photosynthesis in cassava: Characterizing photosynthetic limitations in four current African cultivars.

De Souza AP, Long SP.

Food Energy Secur. 2018 May;7(2):e00130. doi: 10.1002/fes3.130. Epub 2018 Apr 16.


Publisher Correction: Farming with crops and rocks to address global climate, food and soil security.

Beerling DJ, Leake JR, Long SP, Scholes JD, Ton J, Nelson PN, Bird M, Kantzas E, Taylor LL, Sarkar B, Kelland M, DeLucia E, Kantola I, Müller C, Rau GH, Hansen J.

Nat Plants. 2018 Jun;4(6):392. doi: 10.1038/s41477-018-0162-5.


Photosystem II Subunit S overexpression increases the efficiency of water use in a field-grown crop.

Głowacka K, Kromdijk J, Kucera K, Xie J, Cavanagh AP, Leonelli L, Leakey ADB, Ort DR, Niyogi KK, Long SP.

Nat Commun. 2018 Mar 6;9(1):868. doi: 10.1038/s41467-018-03231-x.


Farming with crops and rocks to address global climate, food and soil security.

Beerling DJ, Leake JR, Long SP, Scholes JD, Ton J, Nelson PN, Bird M, Kantzas E, Taylor LL, Sarkar B, Kelland M, DeLucia E, Kantola I, Müller C, Rau G, Hansen J.

Nat Plants. 2018 Mar;4(3):138-147. doi: 10.1038/s41477-018-0108-y. Epub 2018 Feb 19. Review. Erratum in: Nat Plants. 2018 Jun;4(6):392.


Slow induction of photosynthesis on shade to sun transitions in wheat may cost at least 21% of productivity.

Taylor SH, Long SP.

Philos Trans R Soc Lond B Biol Sci. 2017 Sep 26;372(1730). pii: 20160543. doi: 10.1098/rstb.2016.0543.


The Role of Sink Strength and Nitrogen Availability in the Down-Regulation of Photosynthetic Capacity in Field-Grown Nicotiana tabacum L. at Elevated CO2 Concentration.

Ruiz-Vera UM, De Souza AP, Long SP, Ort DR.

Front Plant Sci. 2017 Jun 9;8:998. doi: 10.3389/fpls.2017.00998. eCollection 2017.


Crops In Silico: Generating Virtual Crops Using an Integrative and Multi-scale Modeling Platform.

Marshall-Colon A, Long SP, Allen DK, Allen G, Beard DA, Benes B, von Caemmerer S, Christensen AJ, Cox DJ, Hart JC, Hirst PM, Kannan K, Katz DS, Lynch JP, Millar AJ, Panneerselvam B, Price ND, Prusinkiewicz P, Raila D, Shekar RG, Shrivastava S, Shukla D, Srinivasan V, Stitt M, Turk MJ, Voit EO, Wang Y, Yin X, Zhu XG.

Front Plant Sci. 2017 May 15;8:786. doi: 10.3389/fpls.2017.00786. eCollection 2017.


Potential of global croplands and bioenergy crops for climate change mitigation through deployment for enhanced weathering.

Kantola IB, Masters MD, Beerling DJ, Long SP, DeLucia EH.

Biol Lett. 2017 Apr;13(4). pii: 20160714. doi: 10.1098/rsbl.2016.0714. Review.


Enhancing soybean photosynthetic CO2 assimilation using a cyanobacterial membrane protein, ictB.

Hay WT, Bihmidine S, Mutlu N, Hoang KL, Awada T, Weeks DP, Clemente TE, Long SP.

J Plant Physiol. 2017 May;212:58-68. doi: 10.1016/j.jplph.2017.02.003. Epub 2017 Feb 16.


Expression of cyanobacterial FBP/SBPase in soybean prevents yield depression under future climate conditions.

Köhler IH, Ruiz-Vera UM, VanLoocke A, Thomey ML, Clemente T, Long SP, Ort DR, Bernacchi CJ.

J Exp Bot. 2017 Jan 1;68(3):715-726. doi: 10.1093/jxb/erw435.


Loss of photosynthetic efficiency in the shade. An Achilles heel for the dense modern stands of our most productive C4 crops?

Pignon CP, Jaiswal D, McGrath JM, Long SP.

J Exp Bot. 2017 Jan;68(2):335-345. doi: 10.1093/jxb/erw456.


Decreasing, not increasing, leaf area will raise crop yields under global atmospheric change.

Srinivasan V, Kumar P, Long SP.

Glob Chang Biol. 2017 Apr;23(4):1626-1635. doi: 10.1111/gcb.13526. Epub 2016 Nov 17.


Improving photosynthesis and crop productivity by accelerating recovery from photoprotection.

Kromdijk J, Głowacka K, Leonelli L, Gabilly ST, Iwai M, Niyogi KK, Long SP.

Science. 2016 Nov 18;354(6314):857-861.


Rooting for cassava: insights into photosynthesis and associated physiology as a route to improve yield potential.

De Souza AP, Massenburg LN, Jaiswal D, Cheng S, Shekar R, Long SP.

New Phytol. 2017 Jan;213(1):50-65. doi: 10.1111/nph.14250. Epub 2016 Oct 25. Review.


Intensifying drought eliminates the expected benefits of elevated carbon dioxide for soybean.

Gray SB, Dermody O, Klein SP, Locke AM, McGrath JM, Paul RE, Rosenthal DM, Ruiz-Vera UM, Siebers MH, Strellner R, Ainsworth EA, Bernacchi CJ, Long SP, Ort DR, Leakey AD.

Nat Plants. 2016 Sep 5;2(9):16132. doi: 10.1038/nplants.2016.132.


A user-friendly means to scale from the biochemistry of photosynthesis to whole crop canopies and production in time and space - development of Java WIMOVAC.

Song Q, Chen D, Long SP, Zhu XG.

Plant Cell Environ. 2017 Jan;40(1):51-55. doi: 10.1111/pce.12816. Epub 2016 Oct 7.


High C3 photosynthetic capacity and high intrinsic water use efficiency underlies the high productivity of the bioenergy grass Arundo donax.

Webster RJ, Driever SM, Kromdijk J, McGrath J, Leakey AD, Siebke K, Demetriades-Shah T, Bonnage S, Peloe T, Lawson T, Long SP.

Sci Rep. 2016 Feb 10;6:20694. doi: 10.1038/srep20694.


An evaluation of new and established methods to determine T-DNA copy number and homozygosity in transgenic plants.

Głowacka K, Kromdijk J, Leonelli L, Niyogi KK, Clemente TE, Long SP.

Plant Cell Environ. 2016 Apr;39(4):908-17. doi: 10.1111/pce.12693. Epub 2016 Jan 21.


An analysis of ozone damage to historical maize and soybean yields in the United States.

McGrath JM, Betzelberger AM, Wang S, Shook E, Zhu XG, Long SP, Ainsworth EA.

Proc Natl Acad Sci U S A. 2015 Nov 17;112(46):14390-5. doi: 10.1073/pnas.1509777112. Epub 2015 Nov 2.


Factors underlying genotypic differences in the induction of photosynthesis in soybean [Glycine max (L.) Merr].

Soleh MA, Tanaka Y, Nomoto Y, Iwahashi Y, Nakashima K, Fukuda Y, Long SP, Shiraiwa T.

Plant Cell Environ. 2016 Mar;39(3):685-93. doi: 10.1111/pce.12674. Epub 2016 Jan 12.


Plants in silico: why, why now and what?--an integrative platform for plant systems biology research.

Zhu XG, Lynch JP, LeBauer DS, Millar AJ, Stitt M, Long SP.

Plant Cell Environ. 2016 May;39(5):1049-57. doi: 10.1111/pce.12673. Epub 2015 Dec 21. Review.


Climate-smart agriculture and forestry: maintaining plant productivity in a changing world while minimizing production system effects on climate.

Way DA, Long SP.

Plant Cell Environ. 2015 Sep;38(9):1683-5. doi: 10.1111/pce.12592. No abstract available.


Redesigning photosynthesis to sustainably meet global food and bioenergy demand.

Ort DR, Merchant SS, Alric J, Barkan A, Blankenship RE, Bock R, Croce R, Hanson MR, Hibberd JM, Long SP, Moore TA, Moroney J, Niyogi KK, Parry MA, Peralta-Yahya PP, Prince RC, Redding KE, Spalding MH, van Wijk KJ, Vermaas WF, von Caemmerer S, Weber AP, Yeates TO, Yuan JS, Zhu XG.

Proc Natl Acad Sci U S A. 2015 Jul 14;112(28):8529-36. doi: 10.1073/pnas.1424031112. Epub 2015 Jun 29.


Toward systems-level analysis of agricultural production from crassulacean acid metabolism (CAM): scaling from cell to commercial production.

Davis SC, Ming R, LeBauer DS, Long SP.

New Phytol. 2015 Oct;208(1):66-72. doi: 10.1111/nph.13522. Epub 2015 Jun 22.


A physiological and biophysical model of coppice willow (Salix spp.) production yields for the contiguous USA in current and future climate scenarios.

Wang D, Jaiswal D, LeBauer DS, Wertin TM, Bollero GA, Leakey AD, Long SP.

Plant Cell Environ. 2015 Sep;38(9):1850-65. doi: 10.1111/pce.12556. Epub 2015 Jun 23.


Can the exceptional chilling tolerance of C4 photosynthesis found in Miscanthus × giganteus be exceeded? Screening of a novel Miscanthus Japanese germplasm collection.

Głowacka K, Jørgensen U, Kjeldsen JB, Kørup K, Spitz I, Sacks EJ, Long SP.

Ann Bot. 2015 May;115(6):981-90. doi: 10.1093/aob/mcv035. Epub 2015 Apr 7.


Meeting the global food demand of the future by engineering crop photosynthesis and yield potential.

Long SP, Marshall-Colon A, Zhu XG.

Cell. 2015 Mar 26;161(1):56-66. doi: 10.1016/j.cell.2015.03.019. Review.


[Enhancement of artemisinin biosynthesis in transgenic Artemisia annua L. by overexpressed HDR and ADS genes].

Wang YX, Long SP, Zeng LX, Xiang LE, Lin Z, Chen M, Liao ZH.

Yao Xue Xue Bao. 2014 Sep;49(9):1346-52. Chinese.


Is there potential to adapt soybean (Glycine max Merr.) to future [CO₂]? An analysis of the yield response of 18 genotypes in free-air CO₂ enrichment.

Bishop KA, Betzelberger AM, Long SP, Ainsworth EA.

Plant Cell Environ. 2015 Sep;38(9):1765-74. doi: 10.1111/pce.12443. Epub 2014 Oct 27.


The theoretical limit to plant productivity.

DeLucia EH, Gomez-Casanovas N, Greenberg JA, Hudiburg TW, Kantola IB, Long SP, Miller AD, Ort DR, Parton WJ.

Environ Sci Technol. 2014 Aug 19;48(16):9471-7. doi: 10.1021/es502348e. Epub 2014 Aug 11.


Variation in chilling tolerance for photosynthesis and leaf extension growth among genotypes related to the C4 grass Miscanthus ×giganteus.

Głowacka K, Adhikari S, Peng J, Gifford J, Juvik JA, Long SP, Sacks EJ.

J Exp Bot. 2014 Oct;65(18):5267-78. doi: 10.1093/jxb/eru287. Epub 2014 Jul 19.


Transcriptional responses indicate maintenance of photosynthetic proteins as key to the exceptional chilling tolerance of C4 photosynthesis in Miscanthus × giganteus.

Spence AK, Boddu J, Wang D, James B, Swaminathan K, Moose SP, Long SP.

J Exp Bot. 2014 Jul;65(13):3737-47. doi: 10.1093/jxb/eru209. Epub 2014 Jun 22.


A footprint of past climate change on the diversity and population structure of Miscanthus sinensis.

Clark LV, Brummer JE, Głowacka K, Hall MC, Heo K, Peng J, Yamada T, Yoo JH, Yu CY, Zhao H, Long SP, Sacks EJ.

Ann Bot. 2014 Jul;114(1):97-107. doi: 10.1093/aob/mcu084. Epub 2014 Jun 10.


Botany. Limits on yields in the Corn Belt.

Ort DR, Long SP.

Science. 2014 May 2;344(6183):484-5. doi: 10.1126/science.1253884. No abstract available.


Light to liquid fuel: theoretical and realized energy conversion efficiency of plants using crassulacean acid metabolism (CAM) in arid conditions.

Davis SC, LeBauer DS, Long SP.

J Exp Bot. 2014 Jul;65(13):3471-8. doi: 10.1093/jxb/eru163. Epub 2014 Apr 17. Review.


Simultaneous improvement in productivity, water use, and albedo through crop structural modification.

Drewry DT, Kumar P, Long SP.

Glob Chang Biol. 2014 Jun;20(6):1955-67. doi: 10.1111/gcb.12567. Epub 2014 Apr 3.


Can the cyanobacterial carbon-concentrating mechanism increase photosynthesis in crop species? A theoretical analysis.

McGrath JM, Long SP.

Plant Physiol. 2014 Apr;164(4):2247-61. doi: 10.1104/pp.113.232611. Epub 2014 Feb 18.


Elements required for an efficient NADP-malic enzyme type C4 photosynthesis.

Wang Y, Long SP, Zhu XG.

Plant Physiol. 2014 Apr;164(4):2231-46. doi: 10.1104/pp.113.230284. Epub 2014 Feb 12.


We need winners in the race to increase photosynthesis in rice, whether from conventional breeding, biotechnology or both.

Long SP.

Plant Cell Environ. 2014 Jan;37(1):19-21. doi: 10.1111/pce.12193. Epub 2013 Oct 7. No abstract available.


Predicting greenhouse gas emissions and soil carbon from changing pasture to an energy crop.

Duval BD, Anderson-Teixeira KJ, Davis SC, Keogh C, Long SP, Parton WJ, DeLucia EH.

PLoS One. 2013 Aug 21;8(8):e72019. doi: 10.1371/journal.pone.0072019. eCollection 2013.


[Enhancement of tropane alkaloids production in transgenic hair roots of Atropa belladonna by overexpressing endogenous genes AbPMT and AbH6H].

Long SP, Lu Y, Wang YX, Yang CX, Lan XZ, Liao ZH.

Yao Xue Xue Bao. 2013 Feb;48(2):243-9. Chinese.


Genome of the long-living sacred lotus (Nelumbo nucifera Gaertn.).

Ming R, VanBuren R, Liu Y, Yang M, Han Y, Li LT, Zhang Q, Kim MJ, Schatz MC, Campbell M, Li J, Bowers JE, Tang H, Lyons E, Ferguson AA, Narzisi G, Nelson DR, Blaby-Haas CE, Gschwend AR, Jiao Y, Der JP, Zeng F, Han J, Min XJ, Hudson KA, Singh R, Grennan AK, Karpowicz SJ, Watling JR, Ito K, Robinson SA, Hudson ME, Yu Q, Mockler TC, Carroll A, Zheng Y, Sunkar R, Jia R, Chen N, Arro J, Wai CM, Wafula E, Spence A, Han Y, Xu L, Zhang J, Peery R, Haus MJ, Xiong W, Walsh JA, Wu J, Wang ML, Zhu YJ, Paull RE, Britt AB, Du C, Downie SR, Schuler MA, Michael TP, Long SP, Ort DR, Schopf JW, Gang DR, Jiang N, Yandell M, dePamphilis CW, Merchant SS, Paterson AH, Buchanan BB, Li S, Shen-Miller J.

Genome Biol. 2013 May 10;14(5):R41. doi: 10.1186/gb-2013-14-5-r41.

Supplemental Content

Support Center