Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 15

1.

Elevated atmospheric CO2 concentrations and climate change will affect our food's quality and quantity.

Ebi KL, Loladze I.

Lancet Planet Health. 2019 Jul;3(7):e283-e284. doi: 10.1016/S2542-5196(19)30108-1. No abstract available.

2.

Rising Atmospheric CO2 Lowers Concentrations of Plant Carotenoids Essential to Human Health: A Meta-Analysis.

Loladze I, Nolan JM, Ziska LH, Knobbe AR.

Mol Nutr Food Res. 2019 Aug;63(15):e1801047. doi: 10.1002/mnfr.201801047. Epub 2019 Jul 16. Review.

PMID:
31250968
3.
4.

Carbon dioxide (CO2) levels this century will alter the protein, micronutrients, and vitamin content of rice grains with potential health consequences for the poorest rice-dependent countries.

Zhu C, Kobayashi K, Loladze I, Zhu J, Jiang Q, Xu X, Liu G, Seneweera S, Ebi KL, Drewnowski A, Fukagawa NK, Ziska LH.

Sci Adv. 2018 May 23;4(5):eaaq1012. doi: 10.1126/sciadv.aaq1012. eCollection 2018 May.

5.

Rising atmospheric CO2 is reducing the protein concentration of a floral pollen source essential for North American bees.

Ziska LH, Pettis JS, Edwards J, Hancock JE, Tomecek MB, Clark A, Dukes JS, Loladze I, Polley HW.

Proc Biol Sci. 2016 Apr 13;283(1828). pii: 20160414. doi: 10.1098/rspb.2016.0414.

6.

Down-regulation of tissue N:P ratios in terrestrial plants by elevated CO2.

Deng Q, Hui D, Luo Y, Elser J, Wang YP, Loladze I, Zhang Q, Dennis S.

Ecology. 2015 Dec;96(12):3354-62.

PMID:
26909440
7.
8.

A stoichiometric producer-grazer model incorporating the effects of excess food-nutrient content on consumer dynamics.

Peace A, Zhao Y, Loladze I, Elser JJ, Kuang Y.

Math Biosci. 2013 Aug;244(2):107-15. doi: 10.1016/j.mbs.2013.04.011. Epub 2013 May 16.

PMID:
23684950
9.

The origins of the Redfield nitrogen-to-phosphorus ratio are in a homoeostatic protein-to-rRNA ratio.

Loladze I, Elser JJ.

Ecol Lett. 2011 Mar;14(3):244-50. doi: 10.1111/j.1461-0248.2010.01577.x. Epub 2011 Jan 18.

PMID:
21244593
10.

Dynamics of a mechanistically derived stoichiometric producer-grazer model.

Wang H, Kuang Y, Loladze I.

J Biol Dyn. 2008 Jul;2(3):286-96. doi: 10.1080/17513750701769881.

PMID:
22876870
11.

Competitive coexistence in stoichiometric chaos.

Deng B, Loladze I.

Chaos. 2007 Sep;17(3):033108.

PMID:
17902990
12.

The dynamics of a stoichiometric plant-herbivore model and its discrete analog.

Sui G, Fan M, Loladze I, Kuang Y.

Math Biosci Eng. 2007 Jan;4(1):29-46.

13.

Competition and stoichiometry: coexistence of two predators on one prey.

Loladze I, Kuang Y, Elser JJ, Fagan WF.

Theor Popul Biol. 2004 Feb;65(1):1-15.

PMID:
14642340
14.

Biodiversity, habitat area, resource growth rate and interference competition.

Kuang Y, Fagan WF, Loladze I.

Bull Math Biol. 2003 May;65(3):497-518.

PMID:
12749536
15.

Stoichiometry in producer-grazer systems: linking energy flow with element cycling.

Loladze I, Kuang Y, Elser JJ.

Bull Math Biol. 2000 Nov;62(6):1137-62.

PMID:
11127517

Supplemental Content

Loading ...
Support Center