Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 47

1.

Anthelmintic drug actions in resistant and susceptible C. elegans revealed by electrophysiological recordings in a multichannel microfluidic device.

Weeks JC, Robinson KJ, Lockery SR, Roberts WM.

Int J Parasitol Drugs Drug Resist. 2018 Dec;8(3):607-628. doi: 10.1016/j.ijpddr.2018.10.003. Epub 2018 Oct 30.

2.

Microfluidic platform for electrophysiological recordings from host-stage hookworm and Ascaris suum larvae: A new tool for anthelmintic research.

Weeks JC, Roberts WM, Robinson KJ, Keaney M, Vermeire JJ, Urban JF Jr, Lockery SR, Hawdon JM.

Int J Parasitol Drugs Drug Resist. 2016 Dec;6(3):314-328. doi: 10.1016/j.ijpddr.2016.08.001. Epub 2016 Sep 15.

3.

Dopamine receptor DOP-4 modulates habituation to repetitive photoactivation of a C. elegans polymodal nociceptor.

Ardiel EL, Giles AC, Yu AJ, Lindsay TH, Lockery SR, Rankin CH.

Learn Mem. 2016 Sep 15;23(10):495-503. doi: 10.1101/lm.041830.116. Print 2016 Oct.

4.

A stochastic neuronal model predicts random search behaviors at multiple spatial scales in C. elegans.

Roberts WM, Augustine SB, Lawton KJ, Lindsay TH, Thiele TR, Izquierdo EJ, Faumont S, Lindsay RA, Britton MC, Pokala N, Bargmann CI, Lockery SR.

Elife. 2016 Jan 29;5. pii: e12572. doi: 10.7554/eLife.12572.

5.

Even-Skipped(+) Interneurons Are Core Components of a Sensorimotor Circuit that Maintains Left-Right Symmetric Muscle Contraction Amplitude.

Heckscher ES, Zarin AA, Faumont S, Clark MQ, Manning L, Fushiki A, Schneider-Mizell CM, Fetter RD, Truman JW, Zwart MF, Landgraf M, Cardona A, Lockery SR, Doe CQ.

Neuron. 2015 Oct 21;88(2):314-29. doi: 10.1016/j.neuron.2015.09.009. Epub 2015 Oct 1.

6.

Characterization of Drosophila larval crawling at the level of organism, segment, and somatic body wall musculature.

Heckscher ES, Lockery SR, Doe CQ.

J Neurosci. 2012 Sep 5;32(36):12460-71. doi: 10.1523/JNEUROSCI.0222-12.2012. Erratum in: J Neurosci. 2013 Mar 20;33(12):5433.

7.

Neuronal microcircuits for decision making in C. elegans.

Faumont S, Lindsay TH, Lockery SR.

Curr Opin Neurobiol. 2012 Aug;22(4):580-91. Epub 2012 Jun 12. Review.

8.

A microfluidic device for whole-animal drug screening using electrophysiological measures in the nematode C. elegans.

Lockery SR, Hulme SE, Roberts WM, Robinson KJ, Laromaine A, Lindsay TH, Whitesides GM, Weeks JC.

Lab Chip. 2012 Jun 21;12(12):2211-20. doi: 10.1039/c2lc00001f. Epub 2012 May 15.

9.

Electrophysiological methods for Caenorhabditis elegans neurobiology.

Goodman MB, Lindsay TH, Lockery SR, Richmond JE.

Methods Cell Biol. 2012;107:409-36. doi: 10.1016/B978-0-12-394620-1.00014-X.

10.

Microfluidic devices for analysis of spatial orientation behaviors in semi-restrained Caenorhabditis elegans.

McCormick KE, Gaertner BE, Sottile M, Phillips PC, Lockery SR.

PLoS One. 2011;6(10):e25710. doi: 10.1371/journal.pone.0025710. Epub 2011 Oct 12.

11.

An image-free opto-mechanical system for creating virtual environments and imaging neuronal activity in freely moving Caenorhabditis elegans.

Faumont S, Rondeau G, Thiele TR, Lawton KJ, McCormick KE, Sottile M, Griesbeck O, Heckscher ES, Roberts WM, Doe CQ, Lockery SR.

PLoS One. 2011;6(9):e24666. doi: 10.1371/journal.pone.0024666. Epub 2011 Sep 28.

12.

The computational worm: spatial orientation and its neuronal basis in C. elegans.

Lockery SR.

Curr Opin Neurobiol. 2011 Oct;21(5):782-90. doi: 10.1016/j.conb.2011.06.009. Epub 2011 Jul 18. Review.

13.

Optogenetic analysis of synaptic transmission in the central nervous system of the nematode Caenorhabditis elegans.

Lindsay TH, Thiele TR, Lockery SR.

Nat Commun. 2011;2:306. doi: 10.1038/ncomms1304.

14.

C. elegans Notch signaling regulates adult chemosensory response and larval molting quiescence.

Singh K, Chao MY, Somers GA, Komatsu H, Corkins ME, Larkins-Ford J, Tucey T, Dionne HM, Walsh MB, Beaumont EK, Hart DP, Lockery SR, Hart AC.

Curr Biol. 2011 May 24;21(10):825-34. doi: 10.1016/j.cub.2011.04.010. Epub 2011 May 5.

15.

Evolution and analysis of minimal neural circuits for klinotaxis in Caenorhabditis elegans.

Izquierdo EJ, Lockery SR.

J Neurosci. 2010 Sep 29;30(39):12908-17. doi: 10.1523/JNEUROSCI.2606-10.2010.

16.

Single-cell transcriptional analysis of taste sensory neuron pair in Caenorhabditis elegans.

Takayama J, Faumont S, Kunitomo H, Lockery SR, Iino Y.

Nucleic Acids Res. 2010 Jan;38(1):131-42. doi: 10.1093/nar/gkp868. Epub 2009 Oct 29.

17.

The neural network for chemotaxis to tastants in Caenorhabditis elegans is specialized for temporal differentiation.

Thiele TR, Faumont S, Lockery SR.

J Neurosci. 2009 Sep 23;29(38):11904-11. doi: 10.1523/JNEUROSCI.0594-09.2009.

18.

Neuroscience: A social hub for worms.

Lockery SR.

Nature. 2009 Apr 30;458(7242):1124-5. doi: 10.1038/4581124a. No abstract available.

PMID:
19407792
19.

The quest for action potentials in C. elegans neurons hits a plateau.

Lockery SR, Goodman MB.

Nat Neurosci. 2009 Apr;12(4):377-8. doi: 10.1038/nn0409-377.

20.

First report of action potentials in a C. elegans neuron is premature.

Lockery SR, Goodman MB, Faumont S.

Nat Neurosci. 2009 Apr;12(4):365-6; author reply 366. doi: 10.1038/nn0409-365. No abstract available.

21.

Functional asymmetry in Caenorhabditis elegans taste neurons and its computational role in chemotaxis.

Suzuki H, Thiele TR, Faumont S, Ezcurra M, Lockery SR, Schafer WR.

Nature. 2008 Jul 3;454(7200):114-7. doi: 10.1038/nature06927.

22.

Ammonium-acetate is sensed by gustatory and olfactory neurons in Caenorhabditis elegans.

Frøkjaer-Jensen C, Ailion M, Lockery SR.

PLoS One. 2008 Jun 18;3(6):e2467. doi: 10.1371/journal.pone.0002467.

23.

Artificial dirt: microfluidic substrates for nematode neurobiology and behavior.

Lockery SR, Lawton KJ, Doll JC, Faumont S, Coulthard SM, Thiele TR, Chronis N, McCormick KE, Goodman MB, Pruitt BL.

J Neurophysiol. 2008 Jun;99(6):3136-43. doi: 10.1152/jn.91327.2007. Epub 2008 Mar 12.

24.

Circuit motifs for spatial orientation behaviors identified by neural network optimization.

Dunn NA, Conery JS, Lockery SR.

J Neurophysiol. 2007 Aug;98(2):888-97. Epub 2007 May 23.

25.

Developmental regulation of whole cell capacitance and membrane current in identified interneurons in C. elegans.

Faumont S, Boulin T, Hobert O, Lockery SR.

J Neurophysiol. 2006 Jun;95(6):3665-73. Epub 2006 Mar 22.

26.

Analysis of the effects of turning bias on chemotaxis in C. elegans.

Pierce-Shimomura JT, Dores M, Lockery SR.

J Exp Biol. 2005 Dec;208(Pt 24):4727-33.

27.
28.

Chemosensory behavior of semi-restrained Caenorhabditis elegans.

Faumont S, Miller AC, Lockery SR.

J Neurobiol. 2005 Nov;65(2):171-8.

29.

Step-response analysis of chemotaxis in Caenorhabditis elegans.

Miller AC, Thiele TR, Faumont S, Moravec ML, Lockery SR.

J Neurosci. 2005 Mar 30;25(13):3369-78.

30.

A neural network model of chemotaxis predicts functions of synaptic connections in the nematode Caenorhabditis elegans.

Dunn NA, Lockery SR, Pierce-Shimomura JT, Conery JS.

J Comput Neurosci. 2004 Sep-Oct;17(2):137-47.

PMID:
15306736
31.

Step response analysis of thermotaxis in Caenorhabditis elegans.

Zariwala HA, Miller AC, Faumont S, Lockery SR.

J Neurosci. 2003 May 15;23(10):4369-77.

32.

The homeobox gene lim-6 is required for distinct chemosensory representations in C. elegans.

Pierce-Shimomura JT, Faumont S, Gaston MR, Pearson BJ, Lockery SR.

Nature. 2001 Apr 5;410(6829):694-8. Erratum in: Nature 2001 Aug 2;412(6846):566.

PMID:
11287956
33.

Pressure polishing: a method for re-shaping patch pipettes during fire polishing.

Goodman MB, Lockery SR.

J Neurosci Methods. 2000 Jul 31;100(1-2):13-5.

PMID:
11040361
34.

The fundamental role of pirouettes in Caenorhabditis elegans chemotaxis.

Pierce-Shimomura JT, Morse TM, Lockery SR.

J Neurosci. 1999 Nov 1;19(21):9557-69.

35.

Computational rules for chemotaxis in the nematode C. elegans.

Ferrée TC, Lockery SR.

J Comput Neurosci. 1999 May-Jun;6(3):263-77.

PMID:
10406137
36.

Tight-seal whole-cell patch clamping of Caenorhabditis elegans neurons.

Lockery SR, Goodman MB.

Methods Enzymol. 1998;293:201-17. No abstract available.

PMID:
9711611
37.

Active currents regulate sensitivity and dynamic range in C. elegans neurons.

Goodman MB, Hall DH, Avery L, Lockery SR.

Neuron. 1998 Apr;20(4):763-72.

38.

Using reflexive behaviors of the medicinal leech to study information processing.

Kristan WB Jr, Lockery SR, Lewis JE.

J Neurobiol. 1995 Jul;27(3):380-9. Review.

PMID:
7673896
39.

The computational leech.

Lockery SR, Sejnowski TJ.

Trends Neurosci. 1993 Jul;16(7):283-90. Review.

PMID:
7689773
40.
42.
43.

Two forms of sensitization of the local bending reflex of the medicinal leech.

Lockery SR, Kristan WB Jr.

J Comp Physiol A. 1991 Feb;168(2):165-77.

PMID:
2046043
45.
46.

Function of identified interneurons in the leech elucidated using neural networks trained by back-propagation.

Lockery SR, Wittenberg G, Kristan WB Jr, Cottrell GW.

Nature. 1989 Aug 10;340(6233):468-71.

PMID:
2755509
47.

Habituation of the shortening reflex in the medicinal leech.

Lockery SR, Rawlins JN, Gray JA.

Behav Neurosci. 1985 Apr;99(2):333-41.

PMID:
3843715

Supplemental Content

Loading ...
Support Center