Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 23

1.

Rab32 interacts with SNX6 and affects retromer-dependent Golgi trafficking.

Waschbüsch D, Hübel N, Ossendorf E, Lobbestael E, Baekelandt V, Lindsay AJ, McCaffrey MW, Khan AR, Barnekow A.

PLoS One. 2019 Jan 14;14(1):e0208889. doi: 10.1371/journal.pone.0208889. eCollection 2019.

2.

Inhibition of LRRK2 or Casein Kinase 1 Results in LRRK2 Protein Destabilization.

De Wit T, Baekelandt V, Lobbestael E.

Mol Neurobiol. 2018 Dec 27. doi: 10.1007/s12035-018-1449-2. [Epub ahead of print]

PMID:
30592011
3.

RAB7L1-Mediated Relocalization of LRRK2 to the Golgi Complex Causes Centrosomal Deficits via RAB8A.

Madero-Pérez J, Fernández B, Lara Ordóñez AJ, Fdez E, Lobbestael E, Baekelandt V, Hilfiker S.

Front Mol Neurosci. 2018 Nov 13;11:417. doi: 10.3389/fnmol.2018.00417. eCollection 2018.

4.

LRRK2 Phosphorylation: Behind the Scenes.

De Wit T, Baekelandt V, Lobbestael E.

Neuroscientist. 2018 Oct;24(5):486-500. doi: 10.1177/1073858418756309. Epub 2018 Jan 31. Review.

PMID:
29385885
5.

Parkinson disease-associated mutations in LRRK2 cause centrosomal defects via Rab8a phosphorylation.

Madero-Pérez J, Fdez E, Fernández B, Lara Ordóñez AJ, Blanca Ramírez M, Gómez-Suaga P, Waschbüsch D, Lobbestael E, Baekelandt V, Nairn AC, Ruiz-Martínez J, Aiastui A, López de Munain A, Lis P, Comptdaer T, Taymans JM, Chartier-Harlin MC, Beilina A, Gonnelli A, Cookson MR, Greggio E, Hilfiker S.

Mol Neurodegener. 2018 Jan 23;13(1):3. doi: 10.1186/s13024-018-0235-y.

6.

PAK6 Phosphorylates 14-3-3γ to Regulate Steady State Phosphorylation of LRRK2.

Civiero L, Cogo S, Kiekens A, Morganti C, Tessari I, Lobbestael E, Baekelandt V, Taymans JM, Chartier-Harlin MC, Franchin C, Arrigoni G, Lewis PA, Piccoli G, Bubacco L, Cookson MR, Pinton P, Greggio E.

Front Mol Neurosci. 2017 Dec 14;10:417. doi: 10.3389/fnmol.2017.00417. eCollection 2017.

7.

Pharmacological LRRK2 kinase inhibition induces LRRK2 protein destabilization and proteasomal degradation.

Lobbestael E, Civiero L, De Wit T, Taymans JM, Greggio E, Baekelandt V.

Sci Rep. 2016 Sep 23;6:33897. doi: 10.1038/srep33897.

8.

Leucine-rich repeat kinase 2 interacts with p21-activated kinase 6 to control neurite complexity in mammalian brain.

Civiero L, Cirnaru MD, Beilina A, Rodella U, Russo I, Belluzzi E, Lobbestael E, Reyniers L, Hondhamuni G, Lewis PA, Van den Haute C, Baekelandt V, Bandopadhyay R, Bubacco L, Piccoli G, Cookson MR, Taymans JM, Greggio E.

J Neurochem. 2015 Dec;135(6):1242-56. doi: 10.1111/jnc.13369. Epub 2015 Oct 19.

9.

Chemical genetic approach identifies microtubule affinity-regulating kinase 1 as a leucine-rich repeat kinase 2 substrate.

Krumova P, Reyniers L, Meyer M, Lobbestael E, Stauffer D, Gerrits B, Muller L, Hoving S, Kaupmann K, Voshol J, Fabbro D, Bauer A, Rovelli G, Taymans JM, Bouwmeester T, Baekelandt V.

FASEB J. 2015 Jul;29(7):2980-92. doi: 10.1096/fj.14-262329. Epub 2015 Apr 8.

PMID:
25854701
10.

Differential protein-protein interactions of LRRK1 and LRRK2 indicate roles in distinct cellular signaling pathways.

Reyniers L, Del Giudice MG, Civiero L, Belluzzi E, Lobbestael E, Beilina A, Arrigoni G, Derua R, Waelkens E, Li Y, Crosio C, Iaccarino C, Cookson MR, Baekelandt V, Greggio E, Taymans JM.

J Neurochem. 2014 Oct;131(2):239-50. doi: 10.1111/jnc.12798. Epub 2014 Jul 14.

11.

In silico, in vitro and cellular analysis with a kinome-wide inhibitor panel correlates cellular LRRK2 dephosphorylation to inhibitor activity on LRRK2.

Vancraenenbroeck R, De Raeymaecker J, Lobbestael E, Gao F, De Maeyer M, Voet A, Baekelandt V, Taymans JM.

Front Mol Neurosci. 2014 Jun 3;7:51. doi: 10.3389/fnmol.2014.00051. eCollection 2014.

12.

Unbiased screen for interactors of leucine-rich repeat kinase 2 supports a common pathway for sporadic and familial Parkinson disease.

Beilina A, Rudenko IN, Kaganovich A, Civiero L, Chau H, Kalia SK, Kalia LV, Lobbestael E, Chia R, Ndukwe K, Ding J, Nalls MA; International Parkinson’s Disease Genomics Consortium; North American Brain Expression Consortium, Olszewski M, Hauser DN, Kumaran R, Lozano AM, Baekelandt V, Greene LE, Taymans JM, Greggio E, Cookson MR.

Proc Natl Acad Sci U S A. 2014 Feb 18;111(7):2626-31. doi: 10.1073/pnas.1318306111. Epub 2014 Feb 7.

13.

Long-term overexpression of human wild-type and T240R mutant Parkin in rat substantia nigra induces progressive dopaminergic neurodegeneration.

Van Rompuy AS, Lobbestael E, Van der Perren A, Van den Haute C, Baekelandt V.

J Neuropathol Exp Neurol. 2014 Feb;73(2):159-74. doi: 10.1097/NEN.0000000000000039.

PMID:
24423640
14.

Identification of protein phosphatase 1 as a regulator of the LRRK2 phosphorylation cycle.

Lobbestael E, Zhao J, Rudenko IN, Beylina A, Gao F, Wetter J, Beullens M, Bollen M, Cookson MR, Baekelandt V, Nichols RJ, Taymans JM.

Biochem J. 2013 Nov 15;456(1):119-28. doi: 10.1042/BJ20121772.

15.

MicroRNA-205 regulates the expression of Parkinson's disease-related leucine-rich repeat kinase 2 protein.

Cho HJ, Liu G, Jin SM, Parisiadou L, Xie C, Yu J, Sun L, Ma B, Ding J, Vancraenenbroeck R, Lobbestael E, Baekelandt V, Taymans JM, He P, Troncoso JC, Shen Y, Cai H.

Hum Mol Genet. 2013 Feb 1;22(3):608-20. doi: 10.1093/hmg/dds470. Epub 2012 Nov 2.

16.

Phosphorylation of LRRK2: from kinase to substrate.

Lobbestael E, Baekelandt V, Taymans JM.

Biochem Soc Trans. 2012 Oct;40(5):1102-10. Review.

PMID:
22988873
17.

Biochemical characterization of highly purified leucine-rich repeat kinases 1 and 2 demonstrates formation of homodimers.

Civiero L, Vancraenenbroeck R, Belluzzi E, Beilina A, Lobbestael E, Reyniers L, Gao F, Micetic I, De Maeyer M, Bubacco L, Baekelandt V, Cookson MR, Greggio E, Taymans JM.

PLoS One. 2012;7(8):e43472. doi: 10.1371/journal.pone.0043472. Epub 2012 Aug 29.

18.

Expression, purification and preliminary biochemical and structural characterization of the leucine rich repeat namesake domain of leucine rich repeat kinase 2.

Vancraenenbroeck R, Lobbestael E, Weeks SD, Strelkov SV, Baekelandt V, Taymans JM, De Maeyer M.

Biochim Biophys Acta. 2012 Mar;1824(3):450-60. doi: 10.1016/j.bbapap.2011.12.009. Epub 2012 Jan 11.

PMID:
22251894
19.

LRRK2 kinase activity is dependent on LRRK2 GTP binding capacity but independent of LRRK2 GTP binding.

Taymans JM, Vancraenenbroeck R, Ollikainen P, Beilina A, Lobbestael E, De Maeyer M, Baekelandt V, Cookson MR.

PLoS One. 2011;6(8):e23207. doi: 10.1371/journal.pone.0023207. Epub 2011 Aug 12.

20.

Kinases as targets for Parkinson's disease: from genetics to therapy.

Vancraenenbroeck R, Lobbestael E, Maeyer MD, Baekelandt V, Taymans JM.

CNS Neurol Disord Drug Targets. 2011 Sep 1;10(6):724-40. Review.

PMID:
21838679
21.

Insight into the mode of action of the LRRK2 Y1699C pathogenic mutant.

Daniëls V, Vancraenenbroeck R, Law BM, Greggio E, Lobbestael E, Gao F, De Maeyer M, Cookson MR, Harvey K, Baekelandt V, Taymans JM.

J Neurochem. 2011 Jan;116(2):304-15. doi: 10.1111/j.1471-4159.2010.07105.x.

22.

Immunohistochemical detection of transgene expression in the brain using small epitope tags.

Lobbestael E, Reumers V, Ibrahimi A, Paesen K, Thiry I, Gijsbers R, Van den Haute C, Debyser Z, Baekelandt V, Taymans JM.

BMC Biotechnol. 2010 Feb 18;10:16. doi: 10.1186/1472-6750-10-16.

23.

Phosphorylation of ezrin/radixin/moesin proteins by LRRK2 promotes the rearrangement of actin cytoskeleton in neuronal morphogenesis.

Parisiadou L, Xie C, Cho HJ, Lin X, Gu XL, Long CX, Lobbestael E, Baekelandt V, Taymans JM, Sun L, Cai H.

J Neurosci. 2009 Nov 4;29(44):13971-80. doi: 10.1523/JNEUROSCI.3799-09.2009.

Supplemental Content

Loading ...
Support Center