Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 13

1.

Drivers of microbial community structure in forest soils.

Lladó S, López-Mondéjar R, Baldrian P.

Appl Microbiol Biotechnol. 2018 May;102(10):4331-4338. doi: 10.1007/s00253-018-8950-4. Epub 2018 Mar 30. Review.

PMID:
29600493
2.

Forest Soil Bacteria: Diversity, Involvement in Ecosystem Processes, and Response to Global Change.

Lladó S, López-Mondéjar R, Baldrian P.

Microbiol Mol Biol Rev. 2017 Apr 12;81(2). pii: e00063-16. doi: 10.1128/MMBR.00063-16. Print 2017 Jun. Review.

3.

Community-level physiological profiling analyses show potential to identify the copiotrophic bacteria present in soil environments.

Lladó S, Baldrian P.

PLoS One. 2017 Feb 7;12(2):e0171638. doi: 10.1371/journal.pone.0171638. eCollection 2017.

4.

Comparative assessment of fungal augmentation treatments of a fine-textured and historically oil-contaminated soil.

Covino S, Stella T, D'Annibale A, Lladó S, Baldrian P, Čvančarová M, Cajthaml T, Petruccioli M.

Sci Total Environ. 2016 Oct 1;566-567:250-259. doi: 10.1016/j.scitotenv.2016.05.018. Epub 2016 May 21.

PMID:
27220102
5.

Silvibacterium bohemicum gen. nov. sp. nov., an acidobacterium isolated from coniferous soil in the Bohemian Forest National Park.

Lladó S, Benada O, Cajthaml T, Baldrian P, García-Fraile P.

Syst Appl Microbiol. 2016 Feb;39(1):14-9. doi: 10.1016/j.syapm.2015.12.005. Epub 2015 Dec 18.

PMID:
26774420
6.

Antitumor action of temozolomide, ritonavir and aprepitant against human glioma cells.

Kast RE, Ramiro S, Lladó S, Toro S, Coveñas R, Muñoz M.

J Neurooncol. 2016 Feb;126(3):425-31. doi: 10.1007/s11060-015-1996-6. Epub 2015 Nov 24.

PMID:
26603162
7.

Terracidiphilus gabretensis gen. nov., sp. nov., an Abundant and Active Forest Soil Acidobacterium Important in Organic Matter Transformation.

García-Fraile P, Benada O, Cajthaml T, Baldrian P, Lladó S.

Appl Environ Microbiol. 2015 Nov 6;82(2):560-9. doi: 10.1128/AEM.03353-15. Print 2016 Jan 15.

8.

Pyrosequencing reveals the effect of mobilizing agents and lignocellulosic substrate amendment on microbial community composition in a real industrial PAH-polluted soil.

Lladó S, Covino S, Solanas AM, Petruccioli M, D'annibale A, Viñas M.

J Hazard Mater. 2015;283:35-43. doi: 10.1016/j.jhazmat.2014.08.065. Epub 2014 Sep 16.

PMID:
25261758
9.

Draft Genome Sequence of Burkholderia sordidicola S170, a Potential Plant Growth Promoter Isolated from Coniferous Forest Soil in the Czech Republic.

Lladó S, Xu Z, Sørensen SJ, Baldrian P.

Genome Announc. 2014 Aug 14;2(4). pii: e00810-14. doi: 10.1128/genomeA.00810-14.

10.

Comparative assessment of bioremediation approaches to highly recalcitrant PAH degradation in a real industrial polluted soil.

Lladó S, Covino S, Solanas AM, Viñas M, Petruccioli M, D'annibale A.

J Hazard Mater. 2013 Mar 15;248-249:407-14. doi: 10.1016/j.jhazmat.2013.01.020. Epub 2013 Jan 18.

PMID:
23416485
11.

A diversified approach to evaluate biostimulation and bioaugmentation strategies for heavy-oil-contaminated soil.

Lladó S, Solanas AM, de Lapuente J, Borràs M, Viñas M.

Sci Total Environ. 2012 Oct 1;435-436:262-9. doi: 10.1016/j.scitotenv.2012.07.032. Epub 2012 Aug 2.

PMID:
22858534
12.

Microbial populations related to PAH biodegradation in an aged biostimulated creosote-contaminated soil.

Lladó S, Jiménez N, Viñas M, Solanas AM.

Biodegradation. 2009 Sep;20(5):593-601. doi: 10.1007/s10532-009-9247-1. Epub 2009 Jan 21.

PMID:
19153811
13.

Further characterization of an adenosine transport system in the mitochondrial fraction of rat testis.

Jiménez A, Pubill D, Pallàs M, Camins A, Lladó S, Camarasa J, Escubedo E.

Eur J Pharmacol. 2000 Jun 9;398(1):31-9.

PMID:
10856445

Supplemental Content

Support Center