Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 91

1.

Mutational signatures reveal the role of RAD52 in p53-independent p21-driven genomic instability.

Galanos P, Pappas G, Polyzos A, Kotsinas A, Svolaki I, Giakoumakis NN, Glytsou C, Pateras IS, Swain U, Souliotis VL, Georgakilas AG, Geacintov N, Scorrano L, Lukas C, Lukas J, Livneh Z, Lygerou Z, Chowdhury D, Sørensen CS, Bartek J, Gorgoulis VG.

Genome Biol. 2018 Mar 16;19(1):37. doi: 10.1186/s13059-018-1401-9.

2.

High-resolution genomic assays provide insight into the division of labor between TLS and HDR in mammalian replication of damaged DNA.

Livneh Z, Cohen IS, Paz-Elizur T, Davidovsky D, Carmi D, Swain U, Mirlas-Neisberg N.

DNA Repair (Amst). 2016 Aug;44:59-67. doi: 10.1016/j.dnarep.2016.05.007. Epub 2016 May 16. Review.

PMID:
27262613
3.

In vivo evidence for translesion synthesis by the replicative DNA polymerase δ.

Hirota K, Tsuda M, Mohiuddin, Tsurimoto T, Cohen IS, Livneh Z, Kobayashi K, Narita T, Nishihara K, Murai J, Iwai S, Guilbaud G, Sale JE, Takeda S.

Nucleic Acids Res. 2016 Sep 6;44(15):7242-50. doi: 10.1093/nar/gkw439. Epub 2016 May 16.

4.

DNA sequence context greatly affects the accuracy of bypass across an ultraviolet light 6-4 photoproduct in mammalian cells.

Shriber P, Leitner-Dagan Y, Geacintov N, Paz-Elizur T, Livneh Z.

Mutat Res. 2015 Oct;780:71-6. doi: 10.1016/j.mrfmmm.2015.08.002. Epub 2015 Aug 13.

5.

Development of APE1 enzymatic DNA repair assays: low APE1 activity is associated with increase lung cancer risk.

Sevilya Z, Leitner-Dagan Y, Pinchev M, Kremer R, Elinger D, Lejbkowicz F, Rennert HS, Freedman LS, Rennert G, Paz-Elizur T, Livneh Z.

Carcinogenesis. 2015 Sep;36(9):982-91. doi: 10.1093/carcin/bgv082. Epub 2015 Jun 4.

6.

DNA lesion identity drives choice of damage tolerance pathway in murine cell chromosomes.

Cohen IS, Bar C, Paz-Elizur T, Ainbinder E, Leopold K, de Wind N, Geacintov N, Livneh Z.

Nucleic Acids Res. 2015 Feb 18;43(3):1637-45.

7.

Identification of novel DNA-damage tolerance genes reveals regulation of translesion DNA synthesis by nucleophosmin.

Ziv O, Zeisel A, Mirlas-Neisberg N, Swain U, Nevo R, Ben-Chetrit N, Martelli MP, Rossi R, Schiesser S, Canman CE, Carell T, Geacintov NE, Falini B, Domany E, Livneh Z.

Nat Commun. 2014 Nov 25;5:5437. doi: 10.1038/ncomms6437.

8.

Enzymatic MPG DNA repair assays for two different oxidative DNA lesions reveal associations with increased lung cancer risk.

Leitner-Dagan Y, Sevilya Z, Pinchev M, Kremer R, Elinger D, Rennert HS, Schechtman E, Freedman L, Rennert G, Livneh Z, Paz-Elizur T.

Carcinogenesis. 2014 Dec;35(12):2763-70. doi: 10.1093/carcin/bgu214. Epub 2014 Oct 29.

9.

Low integrated DNA repair score and lung cancer risk.

Sevilya Z, Leitner-Dagan Y, Pinchev M, Kremer R, Elinger D, Rennert HS, Schechtman E, Freedman LS, Rennert G, Paz-Elizur T, Livneh Z.

Cancer Prev Res (Phila). 2014 Apr;7(4):398-406. doi: 10.1158/1940-6207.CAPR-13-0318. Epub 2013 Dec 19.

10.

Genomic assay reveals tolerance of DNA damage by both translesion DNA synthesis and homology-dependent repair in mammalian cells.

Izhar L, Ziv O, Cohen IS, Geacintov NE, Livneh Z.

Proc Natl Acad Sci U S A. 2013 Apr 16;110(16):E1462-9. doi: 10.1073/pnas.1216894110. Epub 2013 Mar 25.

11.

N-methylpurine DNA glycosylase and OGG1 DNA repair activities: opposite associations with lung cancer risk.

Leitner-Dagan Y, Sevilya Z, Pinchev M, Kramer R, Elinger D, Roisman LC, Rennert HS, Schechtman E, Freedman L, Rennert G, Livneh Z, Paz-Elizur T.

J Natl Cancer Inst. 2012 Nov 21;104(22):1765-9. doi: 10.1093/jnci/djs445. Epub 2012 Oct 27.

12.

Quantitative measurement of translesion DNA synthesis in mammalian cells.

Ziv O, Diamant N, Shachar S, Hendel A, Livneh Z.

Methods Mol Biol. 2012;920:529-42. doi: 10.1007/978-1-61779-998-3_35.

PMID:
22941626
13.

PCNA ubiquitination is important, but not essential for translesion DNA synthesis in mammalian cells.

Hendel A, Krijger PH, Diamant N, Goren Z, Langerak P, Kim J, Reissner T, Lee KY, Geacintov NE, Carell T, Myung K, Tateishi S, D'Andrea A, Jacobs H, Livneh Z.

PLoS Genet. 2011 Sep;7(9):e1002262. doi: 10.1371/journal.pgen.1002262. Epub 2011 Sep 8.

14.

DNA damage bypass operates in the S and G2 phases of the cell cycle and exhibits differential mutagenicity.

Diamant N, Hendel A, Vered I, Carell T, Reissner T, de Wind N, Geacinov N, Livneh Z.

Nucleic Acids Res. 2012 Jan;40(1):170-80. doi: 10.1093/nar/gkr596. Epub 2011 Sep 9.

15.

Translesion synthesis of 1,3-GTG cisplatin DNA lesions.

Schneider S, Reissner T, Ziv O, Livneh Z, Carell T.

Chembiochem. 2010 Jul 26;11(11):1521-4. doi: 10.1002/cbic.201000211. No abstract available.

PMID:
20533496
16.

Multiple two-polymerase mechanisms in mammalian translesion DNA synthesis.

Livneh Z, Ziv O, Shachar S.

Cell Cycle. 2010 Feb 15;9(4):729-35. Epub 2010 Feb 23. Review.

PMID:
20139724
17.

Translesion DNA synthesis-assisted non-homologous end-joining of complex double-strand breaks prevents loss of DNA sequences in mammalian cells.

Covo S, de Villartay JP, Jeggo PA, Livneh Z.

Nucleic Acids Res. 2009 Nov;37(20):6737-45. doi: 10.1093/nar/gkp703. Epub 2009 Sep 17.

18.

Repair of gaps opposite lesions by homologous recombination in mammalian cells.

Adar S, Izhar L, Hendel A, Geacintov N, Livneh Z.

Nucleic Acids Res. 2009 Sep;37(17):5737-48. doi: 10.1093/nar/gkp632. Epub 2009 Aug 4.

19.

DNA polymerase zeta cooperates with polymerases kappa and iota in translesion DNA synthesis across pyrimidine photodimers in cells from XPV patients.

Ziv O, Geacintov N, Nakajima S, Yasui A, Livneh Z.

Proc Natl Acad Sci U S A. 2009 Jul 14;106(28):11552-7. doi: 10.1073/pnas.0812548106. Epub 2009 Jun 29.

20.

Separate domains of Rev1 mediate two modes of DNA damage bypass in mammalian cells.

Jansen JG, Tsaalbi-Shtylik A, Hendriks G, Gali H, Hendel A, Johansson F, Erixon K, Livneh Z, Mullenders LH, Haracska L, de Wind N.

Mol Cell Biol. 2009 Jun;29(11):3113-23. doi: 10.1128/MCB.00071-09. Epub 2009 Mar 30.

21.

Two-polymerase mechanisms dictate error-free and error-prone translesion DNA synthesis in mammals.

Shachar S, Ziv O, Avkin S, Adar S, Wittschieben J, Reissner T, Chaney S, Friedberg EC, Wang Z, Carell T, Geacintov N, Livneh Z.

EMBO J. 2009 Feb 18;28(4):383-93. doi: 10.1038/emboj.2008.281. Epub 2009 Jan 15. Erratum in: EMBO J. 2009 Apr 8;28(7):992.

22.

Reduced efficiency and increased mutagenicity of translesion DNA synthesis across a TT cyclobutane pyrimidine dimer, but not a TT 6-4 photoproduct, in human cells lacking DNA polymerase eta.

Hendel A, Ziv O, Gueranger Q, Geacintov N, Livneh Z.

DNA Repair (Amst). 2008 Oct 1;7(10):1636-46. doi: 10.1016/j.dnarep.2008.06.008. Epub 2008 Aug 3.

23.

Analysis of strand transfer and template switching mechanisms of DNA gap repair by homologous recombination in Escherichia coli: predominance of strand transfer.

Izhar L, Goldsmith M, Dahan R, Geacintov N, Lloyd RG, Livneh Z.

J Mol Biol. 2008 Sep 12;381(4):803-9. doi: 10.1016/j.jmb.2008.06.031. Epub 2008 Jun 18.

24.

DNA repair of oxidative DNA damage in human carcinogenesis: potential application for cancer risk assessment and prevention.

Paz-Elizur T, Sevilya Z, Leitner-Dagan Y, Elinger D, Roisman LC, Livneh Z.

Cancer Lett. 2008 Jul 18;266(1):60-72. doi: 10.1016/j.canlet.2008.02.032. Epub 2008 Apr 18. Review.

25.

Single-stranded DNA-binding protein recruits DNA polymerase V to primer termini on RecA-coated DNA.

Arad G, Hendel A, Urbanke C, Curth U, Livneh Z.

J Biol Chem. 2008 Mar 28;283(13):8274-82. doi: 10.1074/jbc.M710290200. Epub 2008 Jan 26.

26.

Novel molecular targets for risk identification: DNA repair enzyme activities.

Paz-Elizur T, Elinger D, Blumenstein S, Krupsky M, Schechtman E, Livneh Z.

Cancer Biomark. 2007;3(3):129-33. Review. No abstract available.

PMID:
17611303
27.

Repair of the oxidative DNA damage 8-oxoguanine as a biomarker for lung cancer risk.

Paz-Elizur T, Krupsky M, Elinger D, Schechtman E, Livneh Z.

Cancer Biomark. 2005;1(2-3):201-5. Review.

PMID:
17192041
28.

Reduced repair of the oxidative 8-oxoguanine DNA damage and risk of head and neck cancer.

Paz-Elizur T, Ben-Yosef R, Elinger D, Vexler A, Krupsky M, Berrebi A, Shani A, Schechtman E, Freedman L, Livneh Z.

Cancer Res. 2006 Dec 15;66(24):11683-9.

29.

Development of an enzymatic DNA repair assay for molecular epidemiology studies: distribution of OGG activity in healthy individuals.

Paz-Elizur T, Elinger D, Leitner-Dagan Y, Blumenstein S, Krupsky M, Berrebi A, Schechtman E, Livneh Z.

DNA Repair (Amst). 2007 Jan 4;6(1):45-60. Epub 2006 Sep 18.

PMID:
16982217
30.
31.

p53 and p21 regulate error-prone DNA repair to yield a lower mutation load.

Avkin S, Sevilya Z, Toube L, Geacintov N, Chaney SG, Oren M, Livneh Z.

Mol Cell. 2006 May 5;22(3):407-13.

32.

Translesion DNA synthesis across non-DNA segments in cultured human cells.

Adar S, Livneh Z.

DNA Repair (Amst). 2006 Apr 8;5(4):479-90. Epub 2006 Feb 13.

PMID:
16473566
33.

Interrogating DNA repair in cancer risk assessment.

Paz-Elizur T, Brenner DE, Livneh Z.

Cancer Epidemiol Biomarkers Prev. 2005 Jul;14(7):1585-7. No abstract available.

34.

Evaluation of lesion clustering in irradiated plasmid DNA.

Leloup C, Garty G, Assaf G, Cristovão A, Breskin A, Chechik R, Shchemelinin S, Paz-Elizur T, Livneh Z, Schulte RW, Bashkirov V, Milligan JR, Grosswendt B.

Int J Radiat Biol. 2005 Jan;81(1):41-54.

PMID:
15962762
35.

Quantitative analysis of translesion DNA synthesis across a benzo[a]pyrene-guanine adduct in mammalian cells: the role of DNA polymerase kappa.

Avkin S, Goldsmith M, Velasco-Miguel S, Geacintov N, Friedberg EC, Livneh Z.

J Biol Chem. 2004 Dec 17;279(51):53298-305. Epub 2004 Oct 9.

36.

Lesion bypass DNA polymerases replicate across non-DNA segments.

Maor-Shoshani A, Ben-Ari V, Livneh Z.

Proc Natl Acad Sci U S A. 2003 Dec 9;100(25):14760-5. Epub 2003 Dec 1.

37.

Analysis of translesion replication across an abasic site by DNA polymerase IV of Escherichia coli.

Maor-Shoshani A, Hayashi K, Ohmori H, Livneh Z.

DNA Repair (Amst). 2003 Nov 21;2(11):1227-38.

PMID:
14599744
38.
39.

DNA repair activity for oxidative damage and risk of lung cancer.

Paz-Elizur T, Krupsky M, Blumenstein S, Elinger D, Schechtman E, Livneh Z.

J Natl Cancer Inst. 2003 Sep 3;95(17):1312-9.

PMID:
12953085
40.

DNA molecule provides a computing machine with both data and fuel.

Benenson Y, Adar R, Paz-Elizur T, Livneh Z, Shapiro E.

Proc Natl Acad Sci U S A. 2003 Mar 4;100(5):2191-6. Epub 2003 Feb 24.

42.

Analysis of the stimulation of DNA polymerase V of Escherichia coli by processivity proteins.

Maor-Shoshani A, Livneh Z.

Biochemistry. 2002 Dec 3;41(48):14438-46.

PMID:
12450411
43.
44.

Quantitative measurement of translesion replication in human cells: evidence for bypass of abasic sites by a replicative DNA polymerase.

Avkin S, Adar S, Blander G, Livneh Z.

Proc Natl Acad Sci U S A. 2002 Mar 19;99(6):3764-9. Epub 2002 Mar 12.

45.

Programmable and autonomous computing machine made of biomolecules.

Benenson Y, Paz-Elizur T, Adar R, Keinan E, Livneh Z, Shapiro E.

Nature. 2001 Nov 22;414(6862):430-4.

46.

The Y-family of DNA polymerases.

Ohmori H, Friedberg EC, Fuchs RP, Goodman MF, Hanaoka F, Hinkle D, Kunkel TA, Lawrence CW, Livneh Z, Nohmi T, Prakash L, Prakash S, Todo T, Walker GC, Wang Z, Woodgate R.

Mol Cell. 2001 Jul;8(1):7-8. No abstract available.

47.

DNA damage control by novel DNA polymerases: translesion replication and mutagenesis.

Livneh Z.

J Biol Chem. 2001 Jul 13;276(28):25639-42. Epub 2001 May 22. Review. No abstract available.

48.

Lesion bypass by the Escherichia coli DNA polymerase V requires assembly of a RecA nucleoprotein filament.

Reuven NB, Arad G, Stasiak AZ, Stasiak A, Livneh Z.

J Biol Chem. 2001 Feb 23;276(8):5511-7. Epub 2000 Nov 17.

49.
50.

Highly mutagenic replication by DNA polymerase V (UmuC) provides a mechanistic basis for SOS untargeted mutagenesis.

Maor-Shoshani A, Reuven NB, Tomer G, Livneh Z.

Proc Natl Acad Sci U S A. 2000 Jan 18;97(2):565-70.

Supplemental Content

Loading ...
Support Center