Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 27

1.

Design and engineering of E. coli metabolic sensor strains with a wide sensitivity range for glycerate.

Aslan S, Noor E, Benito Vaquerizo S, Lindner SN, Bar-Even A.

Metab Eng. 2019 Sep 3;57:96-109. doi: 10.1016/j.ymben.2019.09.002. [Epub ahead of print]

2.

A synthetic glycerol assimilation pathway demonstrates biochemical constraints of cellular metabolism.

Lindner SN, Aslan S, Müller A, Hoffart E, Behrens P, Edlich-Muth C, Blombach B, Bar-Even A.

FEBS J. 2019 Aug 22. doi: 10.1111/febs.15048. [Epub ahead of print]

PMID:
31436884
3.

NADPH-Auxotrophic E. coli: A Sensor Strain for Testing in Vivo Regeneration of NADPH.

Lindner SN, Ramirez LC, Krüsemann JL, Yishai O, Belkhelfa S, He H, Bouzon M, Döring V, Bar-Even A.

ACS Synth Biol. 2018 Dec 21;7(12):2742-2749. doi: 10.1021/acssynbio.8b00313. Epub 2018 Dec 3.

4.

Artificial pathway emergence in central metabolism from three recursive phosphoketolase reactions.

Krüsemann JL, Lindner SN, Dempfle M, Widmer J, Arrivault S, Debacker M, He H, Kubis A, Chayot R, Anissimova M, Marlière P, Cotton CAR, Bar-Even A.

FEBS J. 2018 Dec;285(23):4367-4377. doi: 10.1111/febs.14682. Epub 2018 Nov 10.

PMID:
30347514
5.

An Engineering Approach for Rewiring Microbial Metabolism.

Wenk S, Yishai O, Lindner SN, Bar-Even A.

Methods Enzymol. 2018;608:329-367. doi: 10.1016/bs.mie.2018.04.026. Epub 2018 Aug 3.

PMID:
30173769
6.

Ribulose Monophosphate Shunt Provides Nearly All Biomass and Energy Required for Growth of E. coli.

He H, Edlich-Muth C, Lindner SN, Bar-Even A.

ACS Synth Biol. 2018 Jun 15;7(6):1601-1611. doi: 10.1021/acssynbio.8b00093. Epub 2018 May 25.

7.

Engineered Assimilation of Exogenous and Endogenous Formate in Escherichia coli.

Yishai O, Goldbach L, Tenenboim H, Lindner SN, Bar-Even A.

ACS Synth Biol. 2017 Sep 15;6(9):1722-1731. doi: 10.1021/acssynbio.7b00086. Epub 2017 Jun 12.

8.

The formate bio-economy.

Yishai O, Lindner SN, Gonzalez de la Cruz J, Tenenboim H, Bar-Even A.

Curr Opin Chem Biol. 2016 Dec;35:1-9. doi: 10.1016/j.cbpa.2016.07.005. Epub 2016 Jul 25. Review.

PMID:
27459678
9.

Pyruvate Formate-Lyase Enables Efficient Growth of Escherichia coli on Acetate and Formate.

Zelcbuch L, Lindner SN, Zegman Y, Vainberg Slutskin I, Antonovsky N, Gleizer S, Milo R, Bar-Even A.

Biochemistry. 2016 May 3;55(17):2423-6. doi: 10.1021/acs.biochem.6b00184. Epub 2016 Apr 21.

PMID:
27093333
10.

Transcription of malP is subject to phosphotransferase system-dependent regulation in Corynebacterium glutamicum.

Kuhlmann N, Petrov DP, Henrich AW, Lindner SN, Wendisch VF, Seibold GM.

Microbiology. 2015 Sep;161(9):1830-43. doi: 10.1099/mic.0.000134. Epub 2015 Jul 9.

PMID:
26296766
11.

Metabolic engineering of an ATP-neutral Embden-Meyerhof-Parnas pathway in Corynebacterium glutamicum: growth restoration by an adaptive point mutation in NADH dehydrogenase.

Komati Reddy G, Lindner SN, Wendisch VF.

Appl Environ Microbiol. 2015 Mar;81(6):1996-2005. doi: 10.1128/AEM.03116-14. Epub 2015 Jan 9.

12.

Characterization of fructose 1,6-bisphosphatase and sedoheptulose 1,7-bisphosphatase from the facultative ribulose monophosphate cycle methylotroph Bacillus methanolicus.

Stolzenberger J, Lindner SN, Persicke M, Brautaset T, Wendisch VF.

J Bacteriol. 2013 Nov;195(22):5112-22. doi: 10.1128/JB.00672-13. Epub 2013 Sep 6.

13.

The methylotrophic Bacillus methanolicus MGA3 possesses two distinct fructose 1,6-bisphosphate aldolases.

Stolzenberger J, Lindner SN, Wendisch VF.

Microbiology. 2013 Aug;159(Pt 8):1770-81. doi: 10.1099/mic.0.067314-0. Epub 2013 Jun 12.

PMID:
23760818
14.

Crude glycerol-based production of amino acids and putrescine by Corynebacterium glutamicum.

Meiswinkel TM, Rittmann D, Lindner SN, Wendisch VF.

Bioresour Technol. 2013 Oct;145:254-8. doi: 10.1016/j.biortech.2013.02.053. Epub 2013 Mar 1.

PMID:
23562176
15.

Phosphotransferase system-mediated glucose uptake is repressed in phosphoglucoisomerase-deficient Corynebacterium glutamicum strains.

Lindner SN, Petrov DP, Hagmann CT, Henrich A, Krämer R, Eikmanns BJ, Wendisch VF, Seibold GM.

Appl Environ Microbiol. 2013 Apr;79(8):2588-95. doi: 10.1128/AEM.03231-12. Epub 2013 Feb 8.

16.

Accelerated pentose utilization by Corynebacterium glutamicum for accelerated production of lysine, glutamate, ornithine and putrescine.

Meiswinkel TM, Gopinath V, Lindner SN, Nampoothiri KM, Wendisch VF.

Microb Biotechnol. 2013 Mar;6(2):131-40. doi: 10.1111/1751-7915.12001. Epub 2012 Nov 20.

17.

Reductive whole-cell biotransformation with Corynebacterium glutamicum: improvement of NADPH generation from glucose by a cyclized pentose phosphate pathway using pfkA and gapA deletion mutants.

Siedler S, Lindner SN, Bringer S, Wendisch VF, Bott M.

Appl Microbiol Biotechnol. 2013 Jan;97(1):143-52. doi: 10.1007/s00253-012-4314-7. Epub 2012 Aug 1.

18.

Glycerol-3-phosphatase of Corynebacterium glutamicum.

Lindner SN, Meiswinkel TM, Panhorst M, Youn JW, Wiefel L, Wendisch VF.

J Biotechnol. 2012 Jun 15;159(3):216-24. doi: 10.1016/j.jbiotec.2012.02.003. Epub 2012 Feb 14.

PMID:
22353596
19.

Metabolic engineering of Corynebacterium glutamicum aimed at alternative carbon sources and new products.

Zahoor A, Lindner SN, Wendisch VF.

Comput Struct Biotechnol J. 2012 Oct 30;3:e201210004. doi: 10.5936/csbj.201210004. eCollection 2012. Review.

20.

Impact of a new glucose utilization pathway in amino acid-producing Corynebacterium glutamicum.

Lindner SN, Seibold GM, Krämer R, Wendisch VF.

Bioeng Bugs. 2011 Sep-Oct;2(5):291-5. doi: 10.4161/bbug.2.5.17116. Epub 2011 Sep 1.

PMID:
22008639
21.

Phosphotransferase system-independent glucose utilization in corynebacterium glutamicum by inositol permeases and glucokinases.

Lindner SN, Seibold GM, Henrich A, Krämer R, Wendisch VF.

Appl Environ Microbiol. 2011 Jun;77(11):3571-81. doi: 10.1128/AEM.02713-10. Epub 2011 Apr 8.

22.

Cg2091 encodes a polyphosphate/ATP-dependent glucokinase of Corynebacterium glutamicum.

Lindner SN, Knebel S, Pallerla SR, Schoberth SM, Wendisch VF.

Appl Microbiol Biotechnol. 2010 Jun;87(2):703-13. doi: 10.1007/s00253-010-2568-5. Epub 2010 Apr 9.

PMID:
20379711
23.

Polyphosphate/ATP-dependent NAD kinase of Corynebacterium glutamicum: biochemical properties and impact of ppnK overexpression on lysine production.

Lindner SN, Niederholtmeyer H, Schmitz K, Schoberth SM, Wendisch VF.

Appl Microbiol Biotechnol. 2010 Jun;87(2):583-93. doi: 10.1007/s00253-010-2481-y. Epub 2010 Feb 24.

PMID:
20180116
24.

Exopolyphosphatases PPX1 and PPX2 from Corynebacterium glutamicum.

Lindner SN, Knebel S, Wesseling H, Schoberth SM, Wendisch VF.

Appl Environ Microbiol. 2009 May;75(10):3161-70. doi: 10.1128/AEM.02705-08. Epub 2009 Mar 20.

25.

The global repressor SugR controls expression of genes of glycolysis and of the L-lactate dehydrogenase LdhA in Corynebacterium glutamicum.

Engels V, Lindner SN, Wendisch VF.

J Bacteriol. 2008 Dec;190(24):8033-44. doi: 10.1128/JB.00705-08. Epub 2008 Oct 10.

26.

Engineering of a glycerol utilization pathway for amino acid production by Corynebacterium glutamicum.

Rittmann D, Lindner SN, Wendisch VF.

Appl Environ Microbiol. 2008 Oct;74(20):6216-22. doi: 10.1128/AEM.00963-08. Epub 2008 Aug 29.

27.

NCgl2620 encodes a class II polyphosphate kinase in Corynebacterium glutamicum.

Lindner SN, Vidaurre D, Willbold S, Schoberth SM, Wendisch VF.

Appl Environ Microbiol. 2007 Aug;73(15):5026-33. Epub 2007 Jun 1.

Supplemental Content

Loading ...
Support Center