Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 12

1.

Human Immunodeficiency Virus-Associated Lymphoproliferative Disorders.

Lilly AJ, Fedoriw Y.

Surg Pathol Clin. 2019 Sep;12(3):771-782. doi: 10.1016/j.path.2019.03.005. Epub 2019 May 17. Review.

PMID:
31352987
2.

Regulation of RUNX1 dosage is crucial for efficient blood formation from hemogenic endothelium.

Lie-A-Ling M, Marinopoulou E, Lilly AJ, Challinor M, Patel R, Lancrin C, Kouskoff V, Lacaud G.

Development. 2018 Mar 12;145(5). pii: dev149419. doi: 10.1242/dev.149419.

3.

SOX7 expression is critically required in FLK1-expressing cells for vasculogenesis and angiogenesis during mouse embryonic development.

Lilly AJ, Mazan A, Scott DA, Lacaud G, Kouskoff V.

Mech Dev. 2017 Aug;146:31-41. doi: 10.1016/j.mod.2017.05.004. Epub 2017 May 31.

4.

Interplay between SOX7 and RUNX1 regulates hemogenic endothelial fate in the yolk sac.

Lilly AJ, Costa G, Largeot A, Fadlullah MZ, Lie-A-Ling M, Lacaud G, Kouskoff V.

Development. 2016 Dec 1;143(23):4341-4351. Epub 2016 Oct 17.

5.

SOXF transcription factors in cardiovascular development.

Lilly AJ, Lacaud G, Kouskoff V.

Semin Cell Dev Biol. 2017 Mar;63:50-57. doi: 10.1016/j.semcdb.2016.07.021. Epub 2016 Jul 25. Review.

PMID:
27470491
6.

Dynamic Gene Regulatory Networks Drive Hematopoietic Specification and Differentiation.

Goode DK, Obier N, Vijayabaskar MS, Lie-A-Ling M, Lilly AJ, Hannah R, Lichtinger M, Batta K, Florkowska M, Patel R, Challinor M, Wallace K, Gilmour J, Assi SA, Cauchy P, Hoogenkamp M, Westhead DR, Lacaud G, Kouskoff V, Göttgens B, Bonifer C.

Dev Cell. 2016 Mar 7;36(5):572-87. doi: 10.1016/j.devcel.2016.01.024. Epub 2016 Feb 25.

7.

Decoding the regulatory network of early blood development from single-cell gene expression measurements.

Moignard V, Woodhouse S, Haghverdi L, Lilly AJ, Tanaka Y, Wilkinson AC, Buettner F, Macaulay IC, Jawaid W, Diamanti E, Nishikawa SI, Piterman N, Kouskoff V, Theis FJ, Fisher J, Göttgens B.

Nat Biotechnol. 2015 Mar;33(3):269-276. doi: 10.1038/nbt.3154. Epub 2015 Feb 9.

8.

The case for extracellular Nm23-H1 as a driver of acute myeloid leukaemia (AML) progression.

Lilly AJ, Khanim FL, Bunce CM.

Naunyn Schmiedebergs Arch Pharmacol. 2015 Feb;388(2):225-33. doi: 10.1007/s00210-014-1027-8. Epub 2014 Aug 15. Review.

PMID:
25119778
9.

The haematopoietic stem cell niche: new insights into the mechanisms regulating haematopoietic stem cell behaviour.

Lilly AJ, Johnson WE, Bunce CM.

Stem Cells Int. 2011;2011:274564. doi: 10.4061/2011/274564. Epub 2011 Oct 30.

10.

Nm23-h1 indirectly promotes the survival of acute myeloid leukemia blast cells by binding to more mature components of the leukemic clone.

Lilly AJ, Khanim FL, Hayden RE, Luong QT, Drayson MT, Bunce CM.

Cancer Res. 2011 Feb 1;71(3):1177-86. doi: 10.1158/0008-5472.CAN-10-1704. Epub 2010 Dec 17.

11.

Extracellular Nm23H1 stimulates neurite outgrowth from dorsal root ganglia neurons in vitro independently of nerve growth factor supplementation or its nucleoside diphosphate kinase activity.

Wright KT, Seabright R, Logan A, Lilly AJ, Khanim F, Bunce CM, Johnson WE.

Biochem Biophys Res Commun. 2010 Jul 16;398(1):79-85. doi: 10.1016/j.bbrc.2010.06.039. Epub 2010 Jun 15.

PMID:
20558132
12.

Mechanisms of resistance in nontyphoidal Salmonella enterica strains exhibiting a nonclassical quinolone resistance phenotype.

Gunell M, Webber MA, Kotilainen P, Lilly AJ, Caddick JM, Jalava J, Huovinen P, Siitonen A, Hakanen AJ, Piddock LJ.

Antimicrob Agents Chemother. 2009 Sep;53(9):3832-6. doi: 10.1128/AAC.00121-09. Epub 2009 Jul 13.

Supplemental Content

Loading ...
Support Center