Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 1 to 50 of 368

1.

Determining the pharmacokinetics of nicotinic drugs in the endoplasmic reticulum using biosensors.

Shivange AV, Borden PM, Muthusamy AK, Nichols AL, Bera K, Bao H, Bishara I, Jeon J, Mulcahy MJ, Cohen B, O'Riordan SL, Kim C, Dougherty DA, Chapman ER, Marvin JS, Looger LL, Lester HA.

J Gen Physiol. 2019 Jun 3;151(6):738-757. doi: 10.1085/jgp.201812201. Epub 2019 Feb 4.

PMID:
30718376
2.

Chronic Menthol Does Not Change Stoichiometry or Functional Plasma Membrane Levels of Mouse α3β4-Containing Nicotinic Acetylcholine Receptors.

Bavan S, Kim CH, Henderson BJ, Lester HA.

Mol Pharmacol. 2019 Apr;95(4):398-407. doi: 10.1124/mol.118.114769. Epub 2019 Jan 22.

PMID:
30670481
3.

Bidirectional dopamine modulation of excitatory and inhibitory synaptic inputs to subthalamic neuron subsets containing α4β2 or α7 nAChRs.

Zhou C, Gu W, Wu H, Yan X, Deshpande P, Xiao C, Lester HA.

Neuropharmacology. 2019 Apr;148:220-228. doi: 10.1016/j.neuropharm.2019.01.015. Epub 2019 Jan 17.

PMID:
30660626
4.

Menthol Stereoisomers Exhibit Different Effects on α4β2 nAChR Upregulation and Dopamine Neuron Spontaneous Firing.

Henderson BJ, Grant S, Chu BW, Shahoei R, Huard SM, Saladi SSM, Tajkhorshid E, Dougherty DA, Lester HA.

eNeuro. 2019 Jan 4;5(6). pii: ENEURO.0465-18.2018. doi: 10.1523/ENEURO.0465-18.2018. eCollection 2018 Nov-Dec.

5.

α1-FANGs: Protein Ligands Selective for the α-Bungarotoxin Site of the α1-Nicotinic Acetylcholine Receptor.

Nichols AL, Noridomi K, Hughes CR, Jalali-Yazdi F, Eaton JB, Lai LH, Advani G, Lukas RJ, Lester HA, Chen L, Roberts RW.

ACS Chem Biol. 2018 Sep 21;13(9):2568-2576. doi: 10.1021/acschembio.8b00513. Epub 2018 Aug 13.

PMID:
30059207
6.

Chronic nicotine improves cognitive and social impairment in mice overexpressing wild type α-synuclein.

Subramaniam SR, Magen I, Bove N, Zhu C, Lemesre V, Dutta G, Elias CJ, Lester HA, Chesselet MF.

Neurobiol Dis. 2018 Sep;117:170-180. doi: 10.1016/j.nbd.2018.05.018. Epub 2018 Jun 1.

PMID:
29859873
7.

Photoactivatable drugs for nicotinic optopharmacology.

Banala S, Arvin MC, Bannon NM, Jin XT, Macklin JJ, Wang Y, Peng C, Zhao G, Marshall JJ, Gee KR, Wokosin DL, Kim VJ, McIntosh JM, Contractor A, Lester HA, Kozorovitskiy Y, Drenan RM, Lavis LD.

Nat Methods. 2018 May;15(5):347-350. doi: 10.1038/nmeth.4637. Epub 2018 Mar 26.

8.

Deletion of lynx1 reduces the function of α6* nicotinic receptors.

Parker RL, O'Neill HC, Henley BM, Wageman CR, Drenan RM, Marks MJ, Miwa JM, Grady SR, Lester HA.

PLoS One. 2017 Dec 5;12(12):e0188715. doi: 10.1371/journal.pone.0188715. eCollection 2017.

9.

Acute Ethanol Administration Upregulates Synaptic α4-Subunit of Neuronal Nicotinic Acetylcholine Receptors within the Nucleus Accumbens and Amygdala.

Tarren JR, Lester HA, Belmer A, Bartlett SE.

Front Mol Neurosci. 2017 Oct 24;10:338. doi: 10.3389/fnmol.2017.00338. eCollection 2017.

10.

TC299423, a Novel Agonist for Nicotinic Acetylcholine Receptors.

Wall TR, Henderson BJ, Voren G, Wageman CR, Deshpande P, Cohen BN, Grady SR, Marks MJ, Yohannes D, Kenny PJ, Bencherif M, Lester HA.

Front Pharmacol. 2017 Sep 26;8:641. doi: 10.3389/fphar.2017.00641. eCollection 2017.

11.

Granulocytes as models for human protein marker identification following nicotine exposure.

Mulcahy MJ, Lester HA.

J Neurochem. 2017 Aug;142 Suppl 2:151-161. doi: 10.1111/jnc.14010. Review.

12.

TRPV1 regulates excitatory innervation of OLM neurons in the hippocampus.

Hurtado-Zavala JI, Ramachandran B, Ahmed S, Halder R, Bolleyer C, Awasthi A, Stahlberg MA, Wagener RJ, Anderson K, Drenan RM, Lester HA, Miwa JM, Staiger JF, Fischer A, Dean C.

Nat Commun. 2017 Jul 19;8:15878. doi: 10.1038/ncomms15878.

13.

Secondary Ammonium Agonists Make Dual Cation-π Interactions in α4β2 Nicotinic Receptors.

Post MR, Tender GS, Lester HA, Dougherty DA.

eNeuro. 2017 Mar 30;4(2). pii: ENEURO.0032-17.2017. doi: 10.1523/ENEURO.0032-17.2017. eCollection 2017 Mar-Apr.

14.

Menthol Enhances Nicotine Reward-Related Behavior by Potentiating Nicotine-Induced Changes in nAChR Function, nAChR Upregulation, and DA Neuron Excitability.

Henderson BJ, Wall TR, Henley BM, Kim CH, McKinney S, Lester HA.

Neuropsychopharmacology. 2017 Nov;42(12):2285-2291. doi: 10.1038/npp.2017.72. Epub 2017 Apr 2.

15.

Reliable Identification of Living Dopaminergic Neurons in Midbrain Cultures Using RNA Sequencing and TH-promoter-driven eGFP Expression.

Henley BM, Cohen BN, Kim CH, Gold HD, Srinivasan R, McKinney S, Deshpande P, Lester HA.

J Vis Exp. 2017 Feb 10;(120). doi: 10.3791/54981.

16.

Probing for and Quantifying Agonist Hydrogen Bonds in α6β2 Nicotinic Acetylcholine Receptors.

Post MR, Lester HA, Dougherty DA.

Biochemistry. 2017 Apr 4;56(13):1836-1840. doi: 10.1021/acs.biochem.7b00213. Epub 2017 Mar 21.

17.

Incubator embedded cell culture imaging system (EmSight) based on Fourier ptychographic microscopy.

Kim J, Henley BM, Kim CH, Lester HA, Yang C.

Biomed Opt Express. 2016 Jul 22;7(8):3097-110. doi: 10.1364/BOE.7.003097. eCollection 2016 Aug 1.

18.

Mutation Linked to Autosomal Dominant Nocturnal Frontal Lobe Epilepsy Reduces Low-Sensitivity α4β2, and Increases α5α4β2, Nicotinic Receptor Surface Expression.

Nichols WA, Henderson BJ, Marotta CB, Yu CY, Richards C, Dougherty DA, Lester HA, Cohen BN.

PLoS One. 2016 Jun 23;11(6):e0158032. doi: 10.1371/journal.pone.0158032. eCollection 2016.

19.

Menthol Alone Upregulates Midbrain nAChRs, Alters nAChR Subtype Stoichiometry, Alters Dopamine Neuron Firing Frequency, and Prevents Nicotine Reward.

Henderson BJ, Wall TR, Henley BM, Kim CH, Nichols WA, Moaddel R, Xiao C, Lester HA.

J Neurosci. 2016 Mar 9;36(10):2957-74. doi: 10.1523/JNEUROSCI.4194-15.2016.

20.

Smoking-Relevant Nicotine Concentration Attenuates the Unfolded Protein Response in Dopaminergic Neurons.

Srinivasan R, Henley BM, Henderson BJ, Indersmitten T, Cohen BN, Kim CH, McKinney S, Deshpande P, Xiao C, Lester HA.

J Neurosci. 2016 Jan 6;36(1):65-79. doi: 10.1523/JNEUROSCI.2126-15.2016.

21.

An Unaltered Orthosteric Site and a Network of Long-Range Allosteric Interactions for PNU-120596 in α7 Nicotinic Acetylcholine Receptors.

Marotta CB, Lester HA, Dougherty DA.

Chem Biol. 2015 Aug 20;22(8):1063-73. doi: 10.1016/j.chembiol.2015.06.018. Epub 2015 Jul 23.

22.

Ketamine inside neurons?

Lester HA, Lavis LD, Dougherty DA.

Am J Psychiatry. 2015 Nov 1;172(11):1064-6. doi: 10.1176/appi.ajp.2015.14121537. Epub 2015 Jul 17. No abstract available.

23.

The nicotinic α6 subunit gene determines variability in chronic pain sensitivity via cross-inhibition of P2X2/3 receptors.

Wieskopf JS, Mathur J, Limapichat W, Post MR, Al-Qazzaz M, Sorge RE, Martin LJ, Zaykin DV, Smith SB, Freitas K, Austin JS, Dai F, Zhang J, Marcovitz J, Tuttle AH, Slepian PM, Clarke S, Drenan RM, Janes J, Al Sharari S, Segall SK, Aasvang EK, Lai W, Bittner R, Richards CI, Slade GD, Kehlet H, Walker J, Maskos U, Changeux JP, Devor M, Maixner W, Diatchenko L, Belfer I, Dougherty DA, Su AI, Lummis SC, Imad Damaj M, Lester HA, Patapoutian A, Mogil JS.

Sci Transl Med. 2015 May 13;7(287):287ra72. doi: 10.1126/scitranslmed.3009986.

24.

Heterologous expression and nonsense suppression provide insights into agonist behavior at α6β2 nicotinic acetylcholine receptors.

Post MR, Limapichat W, Lester HA, Dougherty DA.

Neuropharmacology. 2015 Oct;97:376-82. doi: 10.1016/j.neuropharm.2015.04.009. Epub 2015 Apr 20.

25.

Nicotinic receptor subtype-selective circuit patterns in the subthalamic nucleus.

Xiao C, Miwa JM, Henderson BJ, Wang Y, Deshpande P, McKinney SL, Lester HA.

J Neurosci. 2015 Mar 4;35(9):3734-46. doi: 10.1523/JNEUROSCI.3528-14.2015.

26.

The human CHRNA7 and CHRFAM7A genes: A review of the genetics, regulation, and function.

Sinkus ML, Graw S, Freedman R, Ross RG, Lester HA, Leonard S.

Neuropharmacology. 2015 Sep;96(Pt B):274-88. doi: 10.1016/j.neuropharm.2015.02.006. Epub 2015 Feb 19. Review.

27.

Inside-out neuropharmacology of nicotinic drugs.

Henderson BJ, Lester HA.

Neuropharmacology. 2015 Sep;96(Pt B):178-93. doi: 10.1016/j.neuropharm.2015.01.022. Epub 2015 Feb 4. Review.

28.

Allosteric activation of the 5-HT3AB receptor by mCPBG.

Miles TF, Lester HA, Dougherty DA.

Neuropharmacology. 2015 Apr;91:103-8. doi: 10.1016/j.neuropharm.2014.12.018. Epub 2014 Dec 23.

29.

Lynx1 shifts α4β2 nicotinic receptor subunit stoichiometry by affecting assembly in the endoplasmic reticulum.

Nichols WA, Henderson BJ, Yu C, Parker RL, Richards CI, Lester HA, Miwa JM.

J Biol Chem. 2014 Nov 7;289(45):31423-32. doi: 10.1074/jbc.M114.573667. Epub 2014 Sep 5.

30.

The duplicated α7 subunits assemble and form functional nicotinic receptors with the full-length α7.

Wang Y, Xiao C, Indersmitten T, Freedman R, Leonard S, Lester HA.

J Biol Chem. 2014 Sep 19;289(38):26451-63. doi: 10.1074/jbc.M114.582858. Epub 2014 Jul 23.

31.

Functional evaluation of key interactions evident in the structure of the eukaryotic Cys-loop receptor GluCl.

Daeffler KN, Lester HA, Dougherty DA.

ACS Chem Biol. 2014 Oct 17;9(10):2283-90. doi: 10.1021/cb500323d. Epub 2014 Aug 5.

32.

Differential expression and function of nicotinic acetylcholine receptors in subdivisions of medial habenula.

Shih PY, Engle SE, Oh G, Deshpande P, Puskar NL, Lester HA, Drenan RM.

J Neurosci. 2014 Jul 16;34(29):9789-802. doi: 10.1523/JNEUROSCI.0476-14.2014.

33.

Lynx1 supports neuronal health in the mouse dorsal striatum during aging: an ultrastructural investigation.

Kobayashi A, Parker RL, Wright AP, Brahem H, Ku P, Oliver KM, Walz A, Lester HA, Miwa JM.

J Mol Neurosci. 2014 Jul;53(3):525-36. doi: 10.1007/s12031-014-0352-1. Epub 2014 Jul 17.

34.

Subtype-specific mechanisms for functional interaction between α6β4* nicotinic acetylcholine receptors and P2X receptors.

Limapichat W, Dougherty DA, Lester HA.

Mol Pharmacol. 2014 Sep;86(3):263-74. doi: 10.1124/mol.114.093179. Epub 2014 Jun 25.

35.

Pharmacological chaperoning of nAChRs: a therapeutic target for Parkinson's disease.

Srinivasan R, Henderson BJ, Lester HA, Richards CI.

Pharmacol Res. 2014 May;83:20-9. doi: 10.1016/j.phrs.2014.02.005. Epub 2014 Mar 1. Review.

36.

Selective ligand behaviors provide new insights into agonist activation of nicotinic acetylcholine receptors.

Marotta CB, Rreza I, Lester HA, Dougherty DA.

ACS Chem Biol. 2014 May 16;9(5):1153-9. doi: 10.1021/cb400937d. Epub 2014 Mar 5.

37.

Nicotine exploits a COPI-mediated process for chaperone-mediated up-regulation of its receptors.

Henderson BJ, Srinivasan R, Nichols WA, Dilworth CN, Gutierrez DF, Mackey ED, McKinney S, Drenan RM, Richards CI, Lester HA.

J Gen Physiol. 2014 Jan;143(1):51-66. doi: 10.1085/jgp.201311102.

38.

Probing the non-canonical interface for agonist interaction with an α5 containing nicotinic acetylcholine receptor.

Marotta CB, Dilworth CN, Lester HA, Dougherty DA.

Neuropharmacology. 2014 Feb;77:342-9. doi: 10.1016/j.neuropharm.2013.09.028. Epub 2013 Oct 18.

39.

The 5-HT3AB receptor shows an A3B2 stoichiometry at the plasma membrane.

Miles TF, Dougherty DA, Lester HA.

Biophys J. 2013 Aug 20;105(4):887-98. doi: 10.1016/j.bpj.2013.07.015.

40.

Transcriptional regulation by nicotine in dopaminergic neurons.

Henley BM, Williams BA, Srinivasan R, Cohen BN, Xiao C, Mackey ED, Wold BJ, Lester HA.

Biochem Pharmacol. 2013 Oct 15;86(8):1074-83. doi: 10.1016/j.bcp.2013.07.031. Epub 2013 Aug 9.

41.

An engineered glutamate-gated chloride (GluCl) channel for sensitive, consistent neuronal silencing by ivermectin.

Frazier SJ, Cohen BN, Lester HA.

J Biol Chem. 2013 Jul 19;288(29):21029-42. doi: 10.1074/jbc.M112.423921. Epub 2013 May 29.

42.

An unusual pattern of ligand-receptor interactions for the α7 nicotinic acetylcholine receptor, with implications for the binding of varenicline.

Van Arnam EB, Blythe EE, Lester HA, Dougherty DA.

Mol Pharmacol. 2013 Aug;84(2):201-7. doi: 10.1124/mol.113.085795. Epub 2013 May 16.

43.

Key binding interactions for memantine in the NMDA receptor.

Limapichat W, Yu WY, Branigan E, Lester HA, Dougherty DA.

ACS Chem Neurosci. 2013 Feb 20;4(2):255-60. doi: 10.1021/cn300180a. Epub 2012 Dec 7.

44.

Binding interactions with the complementary subunit of nicotinic receptors.

Blum AP, Van Arnam EB, German LA, Lester HA, Dougherty DA.

J Biol Chem. 2013 Mar 8;288(10):6991-7. doi: 10.1074/jbc.M112.439968. Epub 2013 Jan 24.

45.

Mice expressing the ADNFLE valine 287 leucine mutation of the Β2 nicotinic acetylcholine receptor subunit display increased sensitivity to acute nicotine administration and altered presynaptic nicotinic receptor function.

O'Neill HC, Laverty DC, Patzlaff NE, Cohen BN, Fonck C, McKinney S, McIntosh JM, Lindstrom JM, Lester HA, Grady SR, Marks MJ.

Pharmacol Biochem Behav. 2013 Jan;103(3):603-21. doi: 10.1016/j.pbb.2012.10.014. Epub 2012 Nov 1.

46.

A coupled array of noncovalent interactions impacts the function of the 5-HT3A serotonin receptor in an agonist-specific way.

Miles TF, Bower KS, Lester HA, Dougherty DA.

ACS Chem Neurosci. 2012 Oct 17;3(10):753-60. doi: 10.1021/cn3000586. Epub 2012 Jul 20.

47.

Variability of acute extracellular action potential measurements with multisite silicon probes.

Scott KM, Du J, Lester HA, Masmanidis SC.

J Neurosci Methods. 2012 Oct 15;211(1):22-30. doi: 10.1016/j.jneumeth.2012.08.005. Epub 2012 Aug 15.

48.

Förster resonance energy transfer (FRET) correlates of altered subunit stoichiometry in cys-loop receptors, exemplified by nicotinic α4β2.

Srinivasan R, Richards CI, Dilworth C, Moss FJ, Dougherty DA, Lester HA.

Int J Mol Sci. 2012;13(8):10022-40. doi: 10.3390/ijms130810022. Epub 2012 Aug 10.

49.

Functionally important aromatic-aromatic and sulfur-π interactions in the D2 dopamine receptor.

Daeffler KN, Lester HA, Dougherty DA.

J Am Chem Soc. 2012 Sep 12;134(36):14890-6. doi: 10.1021/ja304560x. Epub 2012 Aug 31.

50.

Unparalleled control of neural activity using orthogonal pharmacogenetics.

Shapiro MG, Frazier SJ, Lester HA.

ACS Chem Neurosci. 2012 Aug 15;3(8):619-29. doi: 10.1021/cn300053q. Epub 2012 Jun 1. Review.

Supplemental Content

Loading ...
Support Center