Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 25

1.

Validating Model-Based Prediction Of Biological Knee Moment During Walking With An Exoskeleton in Crouch Gait: Potential Application for Exoskeleton Control.

Chen J, Damiano DL, Lerner ZF, Bulea TC.

IEEE Int Conf Rehabil Robot. 2019 Jun;2019:778-783. doi: 10.1109/ICORR.2019.8779513.

PMID:
31374725
2.

The effects of pediatric obesity on patellofemoral joint contact force during walking.

Kim N, Browning RC, Lerner ZF.

Gait Posture. 2019 Sep;73:209-214. doi: 10.1016/j.gaitpost.2019.07.307. Epub 2019 Jul 23.

PMID:
31374438
3.

Proportional Joint-Moment Control for Instantaneously Adaptive Ankle Exoskeleton Assistance.

Gasparri GM, Luque J, Lerner ZF.

IEEE Trans Neural Syst Rehabil Eng. 2019 Apr;27(4):751-759. doi: 10.1109/TNSRE.2019.2905979. Epub 2019 Mar 19.

PMID:
30908231
4.

Computational modeling of neuromuscular response to swing-phase robotic knee extension assistance in cerebral palsy.

Lerner ZF, Damiano DL, Bulea TC.

J Biomech. 2019 Apr 18;87:142-149. doi: 10.1016/j.jbiomech.2019.02.025. Epub 2019 Mar 7.

PMID:
30862380
5.

A Battery-Powered Ankle Exoskeleton Improves Gait Mechanics in a Feasibility Study of Individuals with Cerebral Palsy.

Lerner ZF, Harvey TA, Lawson JL.

Ann Biomed Eng. 2019 Jun;47(6):1345-1356. doi: 10.1007/s10439-019-02237-w. Epub 2019 Mar 1.

PMID:
30825030
6.

Repeatability of EMG activity during exoskeleton assisted walking in children with cerebral palsy: implications for real time adaptable control.

Bulea TC, Lerner ZF, Damiano DL.

Conf Proc IEEE Eng Med Biol Soc. 2018 Jul;2018:2801-2804. doi: 10.1109/EMBC.2018.8512799.

PMID:
30440983
7.

An Untethered Ankle Exoskeleton Improves Walking Economy in a Pilot Study of Individuals With Cerebral Palsy.

Lerner ZF, Gasparri GM, Bair MO, Lawson JL, Luque J, Harvey TA, Lerner AT.

IEEE Trans Neural Syst Rehabil Eng. 2018 Oct;26(10):1985-1993. doi: 10.1109/TNSRE.2018.2870756. Epub 2018 Sep 17.

8.
9.

A lower-extremity exoskeleton improves knee extension in children with crouch gait from cerebral palsy.

Lerner ZF, Damiano DL, Bulea TC.

Sci Transl Med. 2017 Aug 23;9(404). pii: eaam9145. doi: 10.1126/scitranslmed.aam9145. Epub 2017 Aug 23.

PMID:
28835518
10.

Exergaming with a pediatric exoskeleton: Facilitating rehabilitation and research in children with cerebral palsy.

Bulea TC, Lerner ZF, Gravunder AJ, Damiano DL.

IEEE Int Conf Rehabil Robot. 2017 Jul;2017:1087-1093. doi: 10.1109/ICORR.2017.8009394.

PMID:
28813966
11.

Relationship between assistive torque and knee biomechanics during exoskeleton walking in individuals with crouch gait.

Lerner ZF, Damiano DL, Bulea TC.

IEEE Int Conf Rehabil Robot. 2017 Jul;2017:491-497. doi: 10.1109/ICORR.2017.8009296.

PMID:
28813868
12.

Effectiveness of surgical and non-surgical management of crouch gait in cerebral palsy: A systematic review.

Galey SA, Lerner ZF, Bulea TC, Zimbler S, Damiano DL.

Gait Posture. 2017 May;54:93-105. doi: 10.1016/j.gaitpost.2017.02.024. Epub 2017 Feb 24. Review.

PMID:
28279852
13.

A Robotic Exoskeleton for Treatment of Crouch Gait in Children With Cerebral Palsy: Design and Initial Application.

Lerner ZF, Damiano DL, Park HS, Gravunder AJ, Bulea TC.

IEEE Trans Neural Syst Rehabil Eng. 2017 Jun;25(6):650-659. doi: 10.1109/TNSRE.2016.2595501. Epub 2016 Jul 27.

PMID:
27479974
14.

Estimating the Mechanical Behavior of the Knee Joint During Crouch Gait: Implications for Real-Time Motor Control of Robotic Knee Orthoses.

Lerner ZF, Damiano DL, Bulea TC.

IEEE Trans Neural Syst Rehabil Eng. 2016 Jun;24(6):621-9. doi: 10.1109/TNSRE.2016.2550860. Epub 2016 Apr 14.

15.

Compressive and shear hip joint contact forces are affected by pediatric obesity during walking.

Lerner ZF, Browning RC.

J Biomech. 2016 Jun 14;49(9):1547-1553. doi: 10.1016/j.jbiomech.2016.03.033. Epub 2016 Mar 25.

16.

A robotic exoskeleton to treat crouch gait from cerebral palsy: Initial kinematic and neuromuscular evaluation.

Lerner ZF, Damiano DL, Bulea TC.

Conf Proc IEEE Eng Med Biol Soc. 2016 Aug;2016:2214-2217. doi: 10.1109/EMBC.2016.7591169.

PMID:
28324959
17.

Computational characterization of fracture healing under reduced gravity loading conditions.

Gadomski BC, Lerner ZF, Browning RC, Easley JT, Palmer RH, Puttlitz CM.

J Orthop Res. 2016 Jul;34(7):1206-15. doi: 10.1002/jor.23143. Epub 2016 Jan 8.

18.

Pediatric obesity and walking duration increase medial tibiofemoral compartment contact forces.

Lerner ZF, Board WJ, Browning RC.

J Orthop Res. 2016 Jan;34(1):97-105. doi: 10.1002/jor.23028. Epub 2015 Aug 28.

19.

Modulating tibiofemoral contact force in the sheep hind limb via treadmill walking: Predictions from an opensim musculoskeletal model.

Lerner ZF, Gadomski BC, Ipson AK, Haussler KK, Puttlitz CM, Browning RC.

J Orthop Res. 2015 Aug;33(8):1128-33. doi: 10.1002/jor.22829. Epub 2015 May 28.

20.

How tibiofemoral alignment and contact locations affect predictions of medial and lateral tibiofemoral contact forces.

Lerner ZF, DeMers MS, Delp SL, Browning RC.

J Biomech. 2015 Feb 26;48(4):644-50. doi: 10.1016/j.jbiomech.2014.12.049. Epub 2015 Jan 5.

21.

Does adiposity affect muscle function during walking in children?

Lerner ZF, Shultz SP, Board WJ, Kung S, Browning RC.

J Biomech. 2014 Sep 22;47(12):2975-82. doi: 10.1016/j.jbiomech.2014.07.006. Epub 2014 Jul 15.

PMID:
25064426
22.

Effects of an obesity-specific marker set on estimated muscle and joint forces in walking.

Lerner ZF, Board WJ, Browning RC.

Med Sci Sports Exerc. 2014 Jun;46(6):1261-7. doi: 10.1249/MSS.0000000000000218.

PMID:
24518193
23.

Effects of obesity on lower extremity muscle function during walking at two speeds.

Lerner ZF, Board WJ, Browning RC.

Gait Posture. 2014 Mar;39(3):978-84. doi: 10.1016/j.gaitpost.2013.12.020. Epub 2013 Dec 26.

24.

A comparison of slow, uphill and fast, level walking on lower extremity biomechanics and tibiofemoral joint loading in obese and nonobese adults.

Haight DJ, Lerner ZF, Board WJ, Browning RC.

J Orthop Res. 2014 Feb;32(2):324-30. doi: 10.1002/jor.22497. Epub 2013 Oct 11.

25.

The effects of walking speed on tibiofemoral loading estimated via musculoskeletal modeling.

Lerner ZF, Haight DJ, DeMers MS, Board WJ, Browning RC.

J Appl Biomech. 2014 Apr;30(2):197-205. doi: 10.1123/jab.2012-0206. Epub 2013 Jul 22.

Supplemental Content

Loading ...
Support Center