Format

Send to

Choose Destination
Sci Adv. 2016 Oct 14;2(10):e1600909. eCollection 2016 Oct.

In silico discovery of metal-organic frameworks for precombustion CO2 capture using a genetic algorithm.

Author information

1
Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA.
2
Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA.; Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, CO 80401, USA.
3
Department of Chemistry, Northwestern University, Evanston, IL 60208, USA.
4
Department of Chemistry, Northwestern University, Evanston, IL 60208, USA.; Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah 22254, Saudi Arabia.

Abstract

Discovery of new adsorbent materials with a high CO2 working capacity could help reduce CO2 emissions from newly commissioned power plants using precombustion carbon capture. High-throughput computational screening efforts can accelerate the discovery of new adsorbents but sometimes require significant computational resources to explore the large space of possible materials. We report the in silico discovery of high-performing adsorbents for precombustion CO2 capture by applying a genetic algorithm to efficiently search a large database of metal-organic frameworks (MOFs) for top candidates. High-performing MOFs identified from the in silico search were synthesized and activated and show a high CO2 working capacity and a high CO2/H2 selectivity. One of the synthesized MOFs shows a higher CO2 working capacity than any MOF reported in the literature under the operating conditions investigated here.

KEYWORDS:

Pre-combustion carbon capture; genetic algorithm; high-throughput material screening; materials genome; molecular simulation

Supplemental Content

Full text links

Icon for PubMed Central
Loading ...
Support Center