Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 33

1.

How the hummingbird wingbeat is tuned for efficient hovering.

Ingersoll R, Lentink D.

J Exp Biol. 2018 Oct 15;221(Pt 20). pii: jeb178228. doi: 10.1242/jeb.178228.

PMID:
30323114
2.

Biomechanics of hover performance in Neotropical hummingbirds versus bats.

Ingersoll R, Haizmann L, Lentink D.

Sci Adv. 2018 Sep 26;4(9):eaat2980. doi: 10.1126/sciadv.aat2980. eCollection 2018 Sep.

3.

Adaptive control of turbulence intensity is accelerated by frugal flow sampling.

Quinn DB, van Halder Y, Lentink D.

J R Soc Interface. 2017 Nov;14(136). pii: 20170621. doi: 10.1098/rsif.2017.0621.

PMID:
29118116
4.

The biomechanical origin of extreme wing allometry in hummingbirds.

Skandalis DA, Segre PS, Bahlman JW, Groom DJE, Welch KC Jr, Witt CC, McGuire JA, Dudley R, Lentink D, Altshuler DL.

Nat Commun. 2017 Oct 19;8(1):1047. doi: 10.1038/s41467-017-01223-x.

5.

How pigeons couple three-dimensional elbow and wrist motion to morph their wings.

Stowers AK, Matloff LY, Lentink D.

J R Soc Interface. 2017 Aug;14(133). pii: 20170224. doi: 10.1098/rsif.2017.0224.

6.

Design and analysis of aerodynamic force platforms for free flight studies.

Hightower BJ, Ingersoll R, Chin DD, Lawhon C, Haselsteiner AF, Lentink D.

Bioinspir Biomim. 2017 Oct 16;12(6):064001. doi: 10.1088/1748-3190/aa7eb2.

PMID:
28691925
7.

Inspiration for wing design: how forelimb specialization enables active flight in modern vertebrates.

Chin DD, Matloff LY, Stowers AK, Tucci ER, Lentink D.

J R Soc Interface. 2017 Jun;14(131). pii: 20170240. doi: 10.1098/rsif.2017.0240. Epub 2017 Jun 7. Review.

8.

How birds direct impulse to minimize the energetic cost of foraging flight.

Chin DD, Lentink D.

Sci Adv. 2017 May 17;3(5):e1603041. doi: 10.1126/sciadv.1603041. eCollection 2017 May.

9.

A new low-turbulence wind tunnel for animal and small vehicle flight experiments.

Quinn DB, Watts A, Nagle T, Lentink D.

R Soc Open Sci. 2017 Mar 29;4(3):160960. doi: 10.1098/rsos.160960. eCollection 2017 Mar.

10.

High-speed surface reconstruction of a flying bird using structured light.

Deetjen ME, Biewener AA, Lentink D.

J Exp Biol. 2017 Jun 1;220(Pt 11):1956-1961. doi: 10.1242/jeb.149708. Epub 2017 Mar 27.

11.

Touchdown to take-off: at the interface of flight and surface locomotion.

Roderick WR, Cutkosky MR, Lentink D.

Interface Focus. 2017 Feb 6;7(1):20160094. doi: 10.1098/rsfs.2016.0094. Review.

12.

Lift calculations based on accepted wake models for animal flight are inconsistent and sensitive to vortex dynamics.

Gutierrez E, Quinn DB, Chin DD, Lentink D.

Bioinspir Biomim. 2016 Dec 6;12(1):016004.

PMID:
27921999
13.

Fruit fly scale robots can hover longer with flapping wings than with spinning wings.

Hawkes EW, Lentink D.

J R Soc Interface. 2016 Oct;13(123). pii: 20160730.

14.

Flapping wing aerodynamics: from insects to vertebrates.

Chin DD, Lentink D.

J Exp Biol. 2016 Apr;219(Pt 7):920-32. doi: 10.1242/jeb.042317. Review.

15.

Feather roughness reduces flow separation during low Reynolds number glides of swifts.

van Bokhorst E, de Kat R, Elsinga GE, Lentink D.

J Exp Biol. 2015 Oct;218(Pt 20):3179-91. doi: 10.1242/jeb.121426. Epub 2015 Sep 7.

16.

The role of passive avian head stabilization in flapping flight.

Pete AE, Kress D, Dimitrov MA, Lentink D.

J R Soc Interface. 2015 Sep 6;12(110):0508. doi: 10.1098/rsif.2015.0508.

17.

How Lovebirds Maneuver Rapidly Using Super-Fast Head Saccades and Image Feature Stabilization.

Kress D, van Bokhorst E, Lentink D.

PLoS One. 2015 Jun 24;10(6):e0129287. doi: 10.1371/journal.pone.0129287. eCollection 2015. Erratum in: PLoS One. 2015;10(7):e0133341.

18.

Folding in and out: passive morphing in flapping wings.

Stowers AK, Lentink D.

Bioinspir Biomim. 2015 Mar 25;10(2):025001. doi: 10.1088/1748-3190/10/2/025001.

PMID:
25807583
19.

Power reduction and the radial limit of stall delay in revolving wings of different aspect ratio.

Kruyt JW, van Heijst GF, Altshuler DL, Lentink D.

J R Soc Interface. 2015 Apr 6;12(105). pii: 20150051. doi: 10.1098/rsif.2015.0051.

20.

In vivo recording of aerodynamic force with an aerodynamic force platform: from drones to birds.

Lentink D, Haselsteiner AF, Ingersoll R.

J R Soc Interface. 2015 Mar 6;12(104):20141283. doi: 10.1098/rsif.2014.1283.

21.

Hummingbird wing efficacy depends on aspect ratio and compares with helicopter rotors.

Kruyt JW, Quicazán-Rubio EM, van Heijst GF, Altshuler DL, Lentink D.

J R Soc Interface. 2014 Oct 6;11(99). pii: 20140585. doi: 10.1098/rsif.2014.0585.

22.

Gliding swifts attain laminar flow over rough wings.

Lentink D, de Kat R.

PLoS One. 2014 Jun 25;9(6):e99901. doi: 10.1371/journal.pone.0099901. eCollection 2014.

23.

Bioinspired flight control.

Lentink D.

Bioinspir Biomim. 2014 Jun;9(2):020301. doi: 10.1088/1748-3182/9/2/020301. Epub 2014 May 22. No abstract available.

PMID:
24854957
24.

Biomimetics: Flying like a fly.

Lentink D.

Nature. 2013 Jun 20;498(7454):306-7. doi: 10.1038/nature12258. Epub 2013 Jun 12. No abstract available.

PMID:
23760475
25.

Nature-inspired flight--beyond the leap.

Lentink D, Biewener AA.

Bioinspir Biomim. 2010 Dec;5(4):040201. doi: 10.1088/1748-3182/5/4/040201. Epub 2010 Nov 24. No abstract available.

PMID:
21098959
26.

Vortex interactions with flapping wings and fins can be unpredictable.

Lentink D, Van Heijst GF, Muijres FT, Van Leeuwen JL.

Biol Lett. 2010 Jun 23;6(3):394-7. doi: 10.1098/rsbl.2009.0806. Epub 2010 Feb 3.

27.

Rotational accelerations stabilize leading edge vortices on revolving fly wings.

Lentink D, Dickinson MH.

J Exp Biol. 2009 Aug;212(Pt 16):2705-19. doi: 10.1242/jeb.022269.

28.

Biofluiddynamic scaling of flapping, spinning and translating fins and wings.

Lentink D, Dickinson MH.

J Exp Biol. 2009 Aug;212(Pt 16):2691-704. doi: 10.1242/jeb.022251.

29.

Leading-edge vortices elevate lift of autorotating plant seeds.

Lentink D, Dickson WB, van Leeuwen JL, Dickinson MH.

Science. 2009 Jun 12;324(5933):1438-40. doi: 10.1126/science.1174196.

30.

Automated visual tracking for studying the ontogeny of zebrafish swimming.

Fontaine E, Lentink D, Kranenbarg S, Müller UK, van Leeuwen JL, Barr AH, Burdick JW.

J Exp Biol. 2008 Apr;211(Pt 8):1305-16. doi: 10.1242/jeb.010272.

31.

Vortex-wake interactions of a flapping foil that models animal swimming and flight.

Lentink D, Muijres FT, Donker-Duyvis FJ, van Leeuwen JL.

J Exp Biol. 2008 Jan;211(Pt 2):267-73. doi: 10.1242/jeb.006155.

32.

How swifts control their glide performance with morphing wings.

Lentink D, Müller UK, Stamhuis EJ, de Kat R, van Gestel W, Veldhuis LL, Henningsson P, Hedenström A, Videler JJ, van Leeuwen JL.

Nature. 2007 Apr 26;446(7139):1082-5.

PMID:
17460673
33.

Physiology. Turning on a dime.

Müller UK, Lentink D.

Science. 2004 Dec 10;306(5703):1899-900. No abstract available.

PMID:
15591191

Supplemental Content

Loading ...
Support Center