Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 15

1.

NMR-Based Tissular and Developmental Metabolomics of Tomato Fruit.

Lemaire-Chamley M, Mounet F, Deborde C, Maucourt M, Jacob D, Moing A.

Metabolites. 2019 May 9;9(5). pii: E93. doi: 10.3390/metabo9050093.

2.

Identification of Two New Mechanisms That Regulate Fruit Growth by Cell Expansion in Tomato.

Musseau C, Just D, Jorly J, Gévaudant F, Moing A, Chevalier C, Lemaire-Chamley M, Rothan C, Fernandez L.

Front Plant Sci. 2017 Jun 12;8:988. doi: 10.3389/fpls.2017.00988. eCollection 2017.

3.

Two tomato GDP-D-mannose epimerase isoforms involved in ascorbate biosynthesis play specific roles in cell wall biosynthesis and development.

Mounet-Gilbert L, Dumont M, Ferrand C, Bournonville C, Monier A, Jorly J, Lemaire-Chamley M, Mori K, Atienza I, Hernould M, Stevens R, Lehner A, Mollet JC, Rothan C, Lerouge P, Baldet P.

J Exp Bot. 2016 Aug;67(15):4767-77. doi: 10.1093/jxb/erw260. Epub 2016 Jul 5.

4.

Culture of the Tomato Micro-Tom Cultivar in Greenhouse.

Rothan C, Just D, Fernandez L, Atienza I, Ballias P, Lemaire-Chamley M.

Methods Mol Biol. 2016;1363:57-64. doi: 10.1007/978-1-4939-3115-6_6.

PMID:
26577781
5.

Down-regulation of a single auxin efflux transport protein in tomato induces precocious fruit development.

Mounet F, Moing A, Kowalczyk M, Rohrmann J, Petit J, Garcia V, Maucourt M, Yano K, Deborde C, Aoki K, Bergès H, Granell A, Fernie AR, Bellini C, Rothan C, Lemaire-Chamley M.

J Exp Bot. 2012 Aug;63(13):4901-17. doi: 10.1093/jxb/ers167. Epub 2012 Jul 27.

6.

Tomato GDSL1 is required for cutin deposition in the fruit cuticle.

Girard AL, Mounet F, Lemaire-Chamley M, Gaillard C, Elmorjani K, Vivancos J, Runavot JL, Quemener B, Petit J, Germain V, Rothan C, Marion D, Bakan B.

Plant Cell. 2012 Jul;24(7):3119-34. doi: 10.1105/tpc.112.101055. Epub 2012 Jul 17.

7.

Regulation of the fruit-specific PEP carboxylase SlPPC2 promoter at early stages of tomato fruit development.

Guillet C, Aboul-Soud MA, Le Menn A, Viron N, Pribat A, Germain V, Just D, Baldet P, Rousselle P, Lemaire-Chamley M, Rothan C.

PLoS One. 2012;7(5):e36795. doi: 10.1371/journal.pone.0036795. Epub 2012 May 17.

8.

An integrative genomics approach for deciphering the complex interactions between ascorbate metabolism and fruit growth and composition in tomato.

Garcia V, Stevens R, Gil L, Gilbert L, Gest N, Petit J, Faurobert M, Maucourt M, Deborde C, Moing A, Poessel JL, Jacob D, Bouchet JP, Giraudel JL, Gouble B, Page D, Alhagdow M, Massot C, Gautier H, Lemaire-Chamley M, de Daruvar A, Rolin D, Usadel B, Lahaye M, Causse M, Baldet P, Rothan C.

C R Biol. 2009 Nov;332(11):1007-21. doi: 10.1016/j.crvi.2009.09.013. Epub 2009 Oct 24.

PMID:
19909923
9.

Flexible tools for gene expression and silencing in tomato.

Fernandez AI, Viron N, Alhagdow M, Karimi M, Jones M, Amsellem Z, Sicard A, Czerednik A, Angenent G, Grierson D, May S, Seymour G, Eshed Y, Lemaire-Chamley M, Rothan C, Hilson P.

Plant Physiol. 2009 Dec;151(4):1729-40. doi: 10.1104/pp.109.147546. Epub 2009 Oct 7.

10.

Gene and metabolite regulatory network analysis of early developing fruit tissues highlights new candidate genes for the control of tomato fruit composition and development.

Mounet F, Moing A, Garcia V, Petit J, Maucourt M, Deborde C, Bernillon S, Le Gall G, Colquhoun I, Defernez M, Giraudel JL, Rolin D, Rothan C, Lemaire-Chamley M.

Plant Physiol. 2009 Mar;149(3):1505-28. doi: 10.1104/pp.108.133967. Epub 2009 Jan 14.

11.

Changes in transcriptional profiles are associated with early fruit tissue specialization in tomato.

Lemaire-Chamley M, Petit J, Garcia V, Just D, Baldet P, Germain V, Fagard M, Mouassite M, Cheniclet C, Rothan C.

Plant Physiol. 2005 Oct;139(2):750-69. Epub 2005 Sep 23.

12.

A genetic map of candidate genes and QTLs involved in tomato fruit size and composition.

Causse M, Duffe P, Gomez MC, Buret M, Damidaux R, Zamir D, Gur A, Chevalier C, Lemaire-Chamley M, Rothan C.

J Exp Bot. 2004 Aug;55(403):1671-85. Epub 2004 Jul 16.

PMID:
15258170
13.

A new C-type cyclin-dependent kinase from tomato expressed in dividing tissues does not interact with mitotic and G1 cyclins.

Joubès J, Lemaire-Chamley M, Delmas F, Walter J, Hernould M, Mouras A, Raymond P, Chevalier C.

Plant Physiol. 2001 Aug;126(4):1403-15.

14.

Structural basis for light activation of a chloroplast enzyme: the structure of sorghum NADP-malate dehydrogenase in its oxidized form.

Johansson K, Ramaswamy S, Saarinen M, Lemaire-Chamley M, Issakidis-Bourguet E, Miginiac-Maslow M, Eklund H.

Biochemistry. 1999 Apr 6;38(14):4319-26.

PMID:
10194350
15.

An internal cysteine is involved in the thioredoxin-dependent activation of sorghum leaf NADP-malate dehydrogenase.

Ruelland E, Lemaire-Chamley M, Le Maréchal P, Issakidis-Bourguet E, Djukic N, Miginiac-Maslow M.

J Biol Chem. 1997 Aug 8;272(32):19851-7.

Supplemental Content

Loading ...
Support Center