Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 38

1.

CYCS gene variants associated with thrombocytopenia.

Ledgerwood EC, Dunstan-Harrison C, Ong L, Morison IM.

Platelets. 2019;30(5):672-674. doi: 10.1080/09537104.2018.1543866. Epub 2018 Nov 19. No abstract available.

PMID:
30452302
2.

The proportion of Met80-sulfoxide dictates peroxidase activity of human cytochrome c.

Parakra RD, Kleffmann T, Jameson GNL, Ledgerwood EC.

Dalton Trans. 2018 Jul 10;47(27):9128-9135. doi: 10.1039/c8dt02185f.

PMID:
29944150
3.

Differentiation and cell density upregulate cytochrome c levels in megakaryoblastic cell lines: Implications for analysis of CYCS-associated thrombocytopenia.

Ong L, McDonald KO, Ledgerwood EC.

PLoS One. 2017 Dec 29;12(12):e0190433. doi: 10.1371/journal.pone.0190433. eCollection 2017.

4.

Structural basis of autoregulatory scaffolding by apoptosis signal-regulating kinase 1.

Weijman JF, Kumar A, Jamieson SA, King CM, Caradoc-Davies TT, Ledgerwood EC, Murphy JM, Mace PD.

Proc Natl Acad Sci U S A. 2017 Mar 14;114(11):E2096-E2105. doi: 10.1073/pnas.1620813114. Epub 2017 Feb 27.

5.

Megakaryocytes from CYCS mutation-associated thrombocytopenia release platelets by both proplatelet-dependent and -independent processes.

Ong L, Morison IM, Ledgerwood EC.

Br J Haematol. 2017 Jan;176(2):268-279. doi: 10.1111/bjh.14421. Epub 2016 Nov 11.

PMID:
27861742
6.

The role of peroxiredoxin 1 in redox sensing and transducing.

Ledgerwood EC, Marshall JW, Weijman JF.

Arch Biochem Biophys. 2017 Mar 1;617:60-67. doi: 10.1016/j.abb.2016.10.009. Epub 2016 Oct 15. Review.

PMID:
27756681
7.

Interspecies Variation in the Functional Consequences of Mutation of Cytochrome c.

Josephs TM, Hibbs ME, Ong L, Morison IM, Ledgerwood EC.

PLoS One. 2015 Jun 18;10(6):e0130292. doi: 10.1371/journal.pone.0130292. eCollection 2015.

8.

Enhancing the peroxidase activity of cytochrome c by mutation of residue 41: implications for the peroxidase mechanism and cytochrome c release.

Josephs TM, Morison IM, Day CL, Wilbanks SM, Ledgerwood EC.

Biochem J. 2014 Mar 1;458(2):259-65. doi: 10.1042/BJ20131386.

PMID:
24329121
9.

Conformational change and human cytochrome c function: mutation of residue 41 modulates caspase activation and destabilizes Met-80 coordination.

Josephs TM, Liptak MD, Hughes G, Lo A, Smith RM, Wilbanks SM, Bren KL, Ledgerwood EC.

J Biol Inorg Chem. 2013 Mar;18(3):289-97. doi: 10.1007/s00775-012-0973-1. Epub 2013 Jan 19.

10.

Peroxiredoxin 1 functions as a signal peroxidase to receive, transduce, and transmit peroxide signals in mammalian cells.

Jarvis RM, Hughes SM, Ledgerwood EC.

Free Radic Biol Med. 2012 Oct 1;53(7):1522-30. doi: 10.1016/j.freeradbiomed.2012.08.001. Epub 2012 Aug 8.

PMID:
22902630
11.

Congenital thrombocytopenia and cytochrome C mutation: a matter of birth and death.

Cramer Bordé E, Ouzegdouh Y, Ledgerwood EC, Morison IM.

Semin Thromb Hemost. 2011 Sep;37(6):664-72. doi: 10.1055/s-0031-1291376. Epub 2011 Nov 18. Review.

PMID:
22102269
12.

The proapoptotic G41S mutation to human cytochrome c alters the heme electronic structure and increases the electron self-exchange rate.

Liptak MD, Fagerlund RD, Ledgerwood EC, Wilbanks SM, Bren KL.

J Am Chem Soc. 2011 Feb 9;133(5):1153-5. doi: 10.1021/ja106328k. Epub 2010 Dec 30.

13.

Rapid uptake of lipophilic triphenylphosphonium cations by mitochondria in vivo following intravenous injection: implications for mitochondria-specific therapies and probes.

Porteous CM, Logan A, Evans C, Ledgerwood EC, Menon DK, Aigbirhio F, Smith RA, Murphy MP.

Biochim Biophys Acta. 2010 Sep;1800(9):1009-17. doi: 10.1016/j.bbagen.2010.06.001. Epub 2010 Jun 8.

PMID:
20621583
14.

The orf virus inhibitor of apoptosis functions in a Bcl-2-like manner, binding and neutralizing a set of BH3-only proteins and active Bax.

Westphal D, Ledgerwood EC, Tyndall JD, Hibma MH, Ueda N, Fleming SB, Mercer AA.

Apoptosis. 2009 Nov;14(11):1317-30. doi: 10.1007/s10495-009-0403-1.

PMID:
19779821
15.

Targeting the apoptosome for cancer therapy.

Ledgerwood EC, Morison IM.

Clin Cancer Res. 2009 Jan 15;15(2):420-4. doi: 10.1158/1078-0432.CCR-08-1172. Review.

16.

A mutation of human cytochrome c enhances the intrinsic apoptotic pathway but causes only thrombocytopenia.

Morison IM, Cramer Bordé EM, Cheesman EJ, Cheong PL, Holyoake AJ, Fichelson S, Weeks RJ, Lo A, Davies SM, Wilbanks SM, Fagerlund RD, Ludgate MW, da Silva Tatley FM, Coker MS, Bockett NA, Hughes G, Pippig DA, Smith MP, Capron C, Ledgerwood EC.

Nat Genet. 2008 Apr;40(4):387-9. doi: 10.1038/ng.103. Epub 2008 Mar 16.

PMID:
18345000
17.

Oxidation of mitochondrial peroxiredoxin 3 during the initiation of receptor-mediated apoptosis.

Cox AG, Pullar JM, Hughes G, Ledgerwood EC, Hampton MB.

Free Radic Biol Med. 2008 Mar 15;44(6):1001-9. doi: 10.1016/j.freeradbiomed.2007.11.017. Epub 2007 Dec 5.

PMID:
18164270
18.

Mitochondria-targeted antioxidants do not prevent tumour necrosis factor-induced necrosis of L929 cells.

Jarvis RM, Göttert J, Murphy MP, Ledgerwood EC.

Free Radic Res. 2007 Sep;41(9):1041-6.

PMID:
17729122
19.

A novel Bcl-2-like inhibitor of apoptosis is encoded by the parapoxvirus ORF virus.

Westphal D, Ledgerwood EC, Hibma MH, Fleming SB, Whelan EM, Mercer AA.

J Virol. 2007 Jul;81(13):7178-88. Epub 2007 May 2.

21.

Using mitochondria-targeted molecules to study mitochondrial radical production and its consequences.

Smith RA, Kelso GF, Blaikie FH, Porteous CM, Ledgerwood EC, Hughes G, James AM, Ross MF, Asin-Cayuela J, Cochemé HM, Filipovska A, Murphy MP.

Biochem Soc Trans. 2003 Dec;31(Pt 6):1295-9.

PMID:
14641046
22.

Prevention of mitochondrial oxidative damage using targeted antioxidants.

Kelso GF, Porteous CM, Hughes G, Ledgerwood EC, Gane AM, Smith RA, Murphy MP.

Ann N Y Acad Sci. 2002 Apr;959:263-74.

PMID:
11976201
23.

Selective targeting of a redox-active ubiquinone to mitochondria within cells: antioxidant and antiapoptotic properties.

Kelso GF, Porteous CM, Coulter CV, Hughes G, Porteous WK, Ledgerwood EC, Smith RA, Murphy MP.

J Biol Chem. 2001 Feb 16;276(7):4588-96. Epub 2000 Nov 22.

24.

The imprinted gene Peg3 is not essential for tumor necrosis factor alpha signaling.

Ledgerwood EC, O'Rahilly S, Surani MA.

Lab Invest. 2000 Oct;80(10):1509-11.

25.

Changes in mitochondrial membrane potential during staurosporine-induced apoptosis in Jurkat cells.

Scarlett JL, Sheard PW, Hughes G, Ledgerwood EC, Ku HH, Murphy MP.

FEBS Lett. 2000 Jun 23;475(3):267-72.

26.

Recent advances in the molecular basis of TNF signal transduction.

Ledgerwood EC, Pober JS, Bradley JR.

Lab Invest. 1999 Sep;79(9):1041-50. Review.

PMID:
10496522
27.

Tumor necrosis factor induces distinct patterns of caspase activation in WEHI-164 cells associated with apoptosis or necrosis depending on cell cycle stage.

Faraco PR, Ledgerwood EC, Vandenabeele P, Prins JB, Bradley JR.

Biochem Biophys Res Commun. 1999 Aug 2;261(2):385-92.

PMID:
10425195
28.

Tumor necrosis factor-induced cytotoxicity is not related to rates of mitochondrial morphological abnormalities or autophagy-changes that can be mediated by TNFR-I or TNFR-II.

Prins JB, Ledgerwood EC, Ameloot P, Vandenabeele P, Faraco PR, Bright NA, O'Rahilly S, Bradley JR.

Biosci Rep. 1998 Dec;18(6):329-40.

PMID:
10357175
29.

Tumour necrosis factor is trafficked to a mitochondrial tumour necrosis factor binding protein.

Ledgerwood EC, Prins JB, Bright NA, Johnson DR, Wolfreys K, Pober JS, O'Rahilly S, Bradley JR.

Biochem Soc Trans. 1998 Nov;26(4):S316. No abstract available.

PMID:
10047830
30.

TNF recruits TRADD to the plasma membrane but not the trans-Golgi network, the principal subcellular location of TNF-R1.

Jones SJ, Ledgerwood EC, Prins JB, Galbraith J, Johnson DR, Pober JS, Bradley JR.

J Immunol. 1999 Jan 15;162(2):1042-8.

31.

Tumor necrosis factor is delivered to mitochondria where a tumor necrosis factor-binding protein is localized.

Ledgerwood EC, Prins JB, Bright NA, Johnson DR, Wolfreys K, Pober JS, O'Rahilly S, Bradley JR.

Lab Invest. 1998 Dec;78(12):1583-9.

PMID:
9881958
32.

The N-terminal domains target TNF receptor-associated factor-2 to the nucleus and display transcriptional regulatory activity.

Min W, Bradley JR, Galbraith JJ, Jones SJ, Ledgerwood EC, Pober JS.

J Immunol. 1998 Jul 1;161(1):319-24.

33.

Endoproteases other than furin have a role in hepatic proprotein processing.

Ledgerwood EC, Brennan SO, George PM.

Biochem Mol Biol Int. 1997 Sep;42(6):1131-42.

PMID:
9305531
34.

The specificity of the neuroendocrine convertase PC3 is determined by residues NH2- and COOH-terminal to the cleavage site.

Ledgerwood EC, Brennan SO, Birch NP, George PM.

Biochem Mol Biol Int. 1996 Aug;39(6):1167-76.

PMID:
8876970
35.

Yeast aspartic protease 3 (Yap3) prefers substrates with basic residues in the P2, P1 and P2' positions.

Ledgerwood EC, Brennan SO, Cawley NX, Loh YP, George PM.

FEBS Lett. 1996 Mar 25;383(1-2):67-71.

37.

Endoproteolytic processing of recombinant proalbumin variants by the yeast Kex2 protease.

Ledgerwood EC, George PM, Peach RJ, Brennan SO.

Biochem J. 1995 May 15;308 ( Pt 1):321-5.

38.

The predicted proteinase furin is not the hepatic proalbumin convertase.

Ledgerwood EC, George PM, Bathurst IC, Brennan SO.

Biochim Biophys Acta. 1992 Sep 4;1159(1):9-12.

PMID:
1390914

Supplemental Content

Loading ...
Support Center