Format
Sort by
Items per page

Send to

Choose Destination

Search results

Items: 19

1.

Contribution of Maize Polyamine and Amino Acid Metabolism Toward Resistance Against Aspergillus flavus Infection and Aflatoxin Production.

Majumdar R, Minocha R, Lebar MD, Rajasekaran K, Long S, Carter-Wientjes C, Minocha S, Cary JW.

Front Plant Sci. 2019 May 24;10:692. doi: 10.3389/fpls.2019.00692. eCollection 2019.

2.

The role of extrolites secreted by nonaflatoxigenic Aspergillus flavus in biocontrol efficacy.

Moore GG, Lebar MD, Carter-Wientjes CH.

J Appl Microbiol. 2019 Apr;126(4):1257-1264. doi: 10.1111/jam.14175. Epub 2019 Feb 7.

PMID:
30548988
3.

Whole genome comparison of Aspergillus flavus L-morphotype strain NRRL 3357 (type) and S-morphotype strain AF70.

Gilbert MK, Mack BM, Moore GG, Downey DL, Lebar MD, Joardar V, Losada L, Yu J, Nierman WC, Bhatnagar D.

PLoS One. 2018 Jul 2;13(7):e0199169. doi: 10.1371/journal.pone.0199169. eCollection 2018.

4.

Identification and functional analysis of the aspergillic acid gene cluster in Aspergillus flavus.

Lebar MD, Cary JW, Majumdar R, Carter-Wientjes CH, Mack BM, Wei Q, Uka V, De Saeger S, Diana Di Mavungu J.

Fungal Genet Biol. 2018 Jul;116:14-23. doi: 10.1016/j.fgb.2018.04.009. Epub 2018 Apr 16.

PMID:
29674152
5.

RNA interference-based silencing of the alpha-amylase (amy1) gene in Aspergillus flavus decreases fungal growth and aflatoxin production in maize kernels.

Gilbert MK, Majumdar R, Rajasekaran K, Chen ZY, Wei Q, Sickler CM, Lebar MD, Cary JW, Frame BR, Wang K.

Planta. 2018 Jun;247(6):1465-1473. doi: 10.1007/s00425-018-2875-0. Epub 2018 Mar 14.

PMID:
29541880
6.

Carbon Dioxide Mediates the Response to Temperature and Water Activity Levels in Aspergillus flavus during Infection of Maize Kernels.

Gilbert MK, Medina A, Mack BM, Lebar MD, Rodríguez A, Bhatnagar D, Magan N, Obrian G, Payne G.

Toxins (Basel). 2017 Dec 22;10(1). pii: E5. doi: 10.3390/toxins10010005.

7.

A Fluorescent Probe Distinguishes between Inhibition of Early and Late Steps of Lipopolysaccharide Biogenesis in Whole Cells.

Moison E, Xie R, Zhang G, Lebar MD, Meredith TC, Kahne D.

ACS Chem Biol. 2017 Apr 21;12(4):928-932. doi: 10.1021/acschembio.7b00159. Epub 2017 Mar 9.

8.

A mutant Escherichia coli that attaches peptidoglycan to lipopolysaccharide and displays cell wall on its surface.

Grabowicz M, Andres D, Lebar MD, Malojčić G, Kahne D, Silhavy TJ.

Elife. 2014 Dec 31;3:e05334. doi: 10.7554/eLife.05334.

9.

Miniaturized Cultivation of Microbiota for Antimalarial Drug Discovery.

Waterman C, Calcul L, Beau J, Ma WS, Lebar MD, von Salm JL, Harter C, Mutka T, Morton LC, Maignan P, Barisic B, van Olphen A, Kyle DE, Vrijmoed L, Pang KL, Pearce CJ, Baker BJ.

Med Res Rev. 2016 Jan;36(1):144-68. doi: 10.1002/med.21335. Epub 2014 Dec 26. Review.

PMID:
25545963
10.

Detection of lipid-linked peptidoglycan precursors by exploiting an unexpected transpeptidase reaction.

Qiao Y, Lebar MD, Schirner K, Schaefer K, Tsukamoto H, Kahne D, Walker S.

J Am Chem Soc. 2014 Oct 22;136(42):14678-81. doi: 10.1021/ja508147s. Epub 2014 Oct 10.

11.

Reconstitution of peptidoglycan cross-linking leads to improved fluorescent probes of cell wall synthesis.

Lebar MD, May JM, Meeske AJ, Leiman SA, Lupoli TJ, Tsukamoto H, Losick R, Rudner DZ, Walker S, Kahne D.

J Am Chem Soc. 2014 Aug 6;136(31):10874-7. doi: 10.1021/ja505668f. Epub 2014 Jul 24.

12.

Bacterial cell wall. MurJ is the flippase of lipid-linked precursors for peptidoglycan biogenesis.

Sham LT, Butler EK, Lebar MD, Kahne D, Bernhardt TG, Ruiz N.

Science. 2014 Jul 11;345(6193):220-2. doi: 10.1126/science.1254522.

13.

Screening mangrove endophytic fungi for antimalarial natural products.

Calcul L, Waterman C, Ma WS, Lebar MD, Harter C, Mutka T, Morton L, Maignan P, Van Olphen A, Kyle DE, Vrijmoed L, Pang KL, Pearce C, Baker BJ.

Mar Drugs. 2013 Dec 12;11(12):5036-50. doi: 10.3390/md11125036.

14.

Lipoprotein activators stimulate Escherichia coli penicillin-binding proteins by different mechanisms.

Lupoli TJ, Lebar MD, Markovski M, Bernhardt T, Kahne D, Walker S.

J Am Chem Soc. 2014 Jan 8;136(1):52-5. doi: 10.1021/ja410813j. Epub 2013 Dec 17.

15.

D-amino acids indirectly inhibit biofilm formation in Bacillus subtilis by interfering with protein synthesis.

Leiman SA, May JM, Lebar MD, Kahne D, Kolter R, Losick R.

J Bacteriol. 2013 Dec;195(23):5391-5. doi: 10.1128/JB.00975-13. Epub 2013 Oct 4.

16.

Forming cross-linked peptidoglycan from synthetic gram-negative Lipid II.

Lebar MD, Lupoli TJ, Tsukamoto H, May JM, Walker S, Kahne D.

J Am Chem Soc. 2013 Mar 27;135(12):4632-5. doi: 10.1021/ja312510m. Epub 2013 Mar 13.

17.

CNS and antimalarial activity of synthetic meridianin and psammopemmin analogs.

Lebar MD, Hahn KN, Mutka T, Maignan P, McClintock JB, Amsler CD, van Olphen A, Kyle DE, Baker BJ.

Bioorg Med Chem. 2011 Oct 1;19(19):5756-62. doi: 10.1016/j.bmc.2011.08.033. Epub 2011 Aug 22.

PMID:
21907583
18.

The diarylheptanoid (+)-aR,11S-myricanol and two flavones from bayberry (Myrica cerifera) destabilize the microtubule-associated protein tau.

Jones JR, Lebar MD, Jinwal UK, Abisambra JF, Koren J 3rd, Blair L, O'Leary JC, Davey Z, Trotter J, Johnson AG, Weeber E, Eckman CB, Baker BJ, Dickey CA.

J Nat Prod. 2011 Jan 28;74(1):38-44. doi: 10.1021/np100572z. Epub 2010 Dec 8.

19.

Cold-water marine natural products.

Lebar MD, Heimbegner JL, Baker BJ.

Nat Prod Rep. 2007 Aug;24(4):774-97. Epub 2007 Mar 29. Review.

PMID:
17653359

Supplemental Content

Loading ...
Support Center