Format

Send to

Choose Destination
Acta Biomater. 2015 Feb;13:364-73. doi: 10.1016/j.actbio.2014.11.005. Epub 2014 Nov 11.

Field effect transistors based on semiconductive microbially synthesized chalcogenide nanofibers.

Author information

1
Department of Physics and Astronomy, University of Southern California, 920 Bloom Walk, Seaver Science Center 215C, Los Angeles, CA 90089-0484, USA.
2
Department of Chemistry, University of Southern California, Los Angeles, CA 90089-0484, USA.
3
Department of Physics and Astronomy, University of Southern California, 920 Bloom Walk, Seaver Science Center 215C, Los Angeles, CA 90089-0484, USA; Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089-0484, USA. Electronic address: mnaggar@usc.edu.

Abstract

Microbial redox activity offers a potentially transformative approach to the low-temperature synthesis of nanostructured inorganic materials. Diverse strains of the dissimilatory metal-reducing bacteria Shewanella are known to produce photoactive filamentous arsenic sulfide nanomaterials by reducing arsenate and thiosulfate in anaerobic culture conditions. Here we report in situ microscopic observations and measure the thermally activated (79 kJ mol(-1)) precipitation kinetics of high yield (504 mg per liter of culture, 82% of theoretical maximum) extracellular As2S3 nanofibers produced by Shewanella sp. strain ANA-3, and demonstrate their potential in functional devices by constructing field effect transistors (FETs) based on individual nanofibers. The use of strain ANA-3, which possesses both respiratory and detoxification arsenic reductases, resulted in significantly faster nanofiber synthesis than other strains previously tested, mutants of ANA-3 deficient in arsenic reduction, and when compared to abiotic arsenic sulfide precipitation from As(III) and S(2-). Detailed characterization by electron microscopy, energy-dispersive X-ray spectroscopy, electron probe microanalysis and Tauc analysis of UV-vis spectrophotometry showed the biogenic precipitate to consist primarily of amorphous As2S3 nanofibers with an indirect optical band gap of 2.37 eV. X-ray diffraction also revealed the presence of crystalline As8S(9-x) minerals that, until recently, were thought to form only at higher temperatures and under hydrothermal conditions. The nanoscale FETs enabled a detailed characterization of the charge mobility (∼10(-5) cm(2) V(-1) s(-1)) and gating behavior of the heterogeneously doped nanofibers. These studies indicate that the biotransformation of metalloids and chalcogens by bacteria enables fast, efficient, sustainable synthesis of technologically relevant chalcogenides for potential electronic and optoelectronic applications.

KEYWORDS:

Arsenic sulfide; Biogenic materials; Field effect transistor; Nanostructures; Shewanella

PMID:
25462841
DOI:
10.1016/j.actbio.2014.11.005
[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center